【題目】已知P是直線l:3x-4y+11=0上的動(dòng)點(diǎn),PA,PB是圓x2y2-2x-2y+1=0的兩條切線(AB是切點(diǎn)),C是圓心,那么四邊形PACB的面積的最小值是(  )

A. B. 2 C. D. 2

【答案】C

【解析】

把圓的方程化為標(biāo)準(zhǔn)方程為(x﹣1)2+(y﹣1)2=1,則可知直線與圓相離.S四邊形PACBSPAC+SPBC,當(dāng)|PC|取最小值時(shí),|PA|=|PB|取最小值,即SPACSPBC取最小值,由此能夠求出四邊形PACB面積的最小值.

:把圓的方程化為標(biāo)準(zhǔn)方程為(x﹣1)2+(y﹣1)2=1,則可知直線與圓相離.

如圖,S四邊形PACBSPAC+SPBC

SPAC|PA||CA||PA|,

SPBC|PB||CB||PB|,

又|PA|,|PB|,

∴當(dāng)|PC|取最小值時(shí),|PA|=|PB|取最小值,

SPACSPBC取最小值,此時(shí),CPl,|CP|2,

SPACSPBC,即四邊形PACB面積的最小值是

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)求函數(shù)的最小值和最小正周期;

Ⅱ)已知內(nèi)角的對邊分別為,且,若向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,則下列結(jié)論中正確的是( )

A. 若a1=1,a5=4,則a3=﹣2

B. 若a1+a3>0,則a2+a4>0

C. 若a2>a1,則a3>a2

D. 若a2>a1>0,則a1+a3>2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知x>0,y>0,x+y+xy=8,則x+y的最小值?

(2)已知不等式的解集為{x|a≤x<b},點(diǎn)(a,b)在直線mx+ny+1=0上,其中m,n>0,若對任意滿足條件的m,n,恒有成立,則λ的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右兩個(gè)焦點(diǎn)為,離心率為,過點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與橢圓C相交于兩點(diǎn),橢圓的左頂點(diǎn)為,連接并延長交直線兩點(diǎn) ,分別為的縱坐標(biāo),且滿足.求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率;

(2)估計(jì)這次考試的平均分和中位數(shù)(精確到0.01);

(3)從成績是40~50分及90~100分的學(xué)生中選兩人,記他們的成績分別為,求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若 ,求函數(shù) 處的切線方程
(2)設(shè)函數(shù) ,求 的單調(diào)區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且,點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn)

(1)求證:;

(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項(xiàng)和,則使得Sn達(dá)到最大值的n是(
A.21
B.20
C.19
D.18

查看答案和解析>>

同步練習(xí)冊答案