【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E是棱PD的中點(diǎn),點(diǎn)F是PC的中點(diǎn). (Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若底面ABCD為正方形, ,求二面角C﹣AF﹣D大。
【答案】證明:(Ⅰ)連接BD,設(shè)AC∩BD=O,連結(jié)OE,
∵四邊形ABCD為矩形,∴O是BD的中點(diǎn),
∵點(diǎn)E是棱PD的中點(diǎn),∴PB∥EO,
又PB平面AEC,EO平面AEC,
∴PB∥平面AEC.
(Ⅱ)由題可知AB,AD,AP兩兩垂直,
分別以 、 、 的方向?yàn)樽鴺?biāo)軸方向建立空間直角坐標(biāo)系.
設(shè)由 可得AP=AB,
于是可令A(yù)P=AB=AD=2,則
A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(xiàn)(1,1,1)
設(shè)平面CAF的一個(gè)法向量為 .由于 ,
∴ ,解得x=﹣1,所以 .
∵y軸平面DAF,∴設(shè)平面DAF的一個(gè)法向量為 .
∵ ,∴ ,解得z=﹣1,
∴ .
∴ .∴二面角C﹣AF﹣D的大小為60°.
【解析】(Ⅰ)連接BD,設(shè)AC∩BD=O,連結(jié)OE,推導(dǎo)出PB∥EO,由此能證明PB∥平面AEC.(Ⅱ)分別以 、 、 的方向?yàn)樽鴺?biāo)軸方向建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AF﹣D的大。
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足f′(x)<f(x),且f(x+2)=f(x﹣2),f(4)=1,則不等式f(x)<ex的解集為( )
A.(0,+∞)
B.(1,+∞)
C.(4,+∞)
D.(﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個(gè)單位,所得函數(shù)圖象所對(duì)應(yīng)的解析式為__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求證:f(x)的圖象在g(x)圖象的上方;
(Ⅱ) 若f(x)和g(x)的圖象有公共點(diǎn)P,且在點(diǎn)P處的切線相同,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于,四邊形ABCD是正方形.
(1)求證;
(2)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 底面,底面為矩形,且, 為的中點(diǎn).
(1)過點(diǎn)作一條射線,使得,求證:平面平面;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB的中點(diǎn),且△PDB是正三角形,PA⊥PC.
(1)求證:平面PAC⊥平面ABC.
(2)求二面角D-AP-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上的凸四邊形 ABCD 滿足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com