如下圖所示,橢圓的左頂點為,是橢圓上異于點的任意一點,點與點關(guān)于點對稱.
(1)若點的坐標(biāo)為,求的值;
(2)若橢圓上存在點,使得,求的取值范圍.

(1);(2)

解析試題分析:(1)把點P坐標(biāo)代入橢圓C的方程解方程即可;(2)設(shè)然后利用點M在橢圓上和建立關(guān)于的方程,再消去得到m的關(guān)于的表達(dá)式,再利用基本不等式求范圍.
試題解析:(1)依題意,是線段的中點,因為A(-1,0),P,
所以點M的坐標(biāo)為   2分
由點M在橢圓上,所以,解得m=   6分
(2)解:設(shè)則,
   9分
因為,OP⊥OM,所以
   11分
所以(或:導(dǎo)數(shù)法)

   14分
考點:(1)橢圓的標(biāo)準(zhǔn)方程;(2)基本不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知,其中,求的最小值,及此時的值.
(2)關(guān)于的不等式,討論的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-5:不等式選講
,且.
(Ⅰ)求的最小值;
(Ⅱ)是否存在,使得?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右準(zhǔn)線,離心率,是橢圓上的兩動點,動點滿足,(其中為常數(shù)).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)且直線斜率均存在時,求的最小值;
(3)若是線段的中點,且,問是否存在常數(shù)和平面內(nèi)兩定點,使得動點滿足,若存在,求出的值和定點,;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠擬建一座平面圖為矩形,面積為的三段式污水處理池,池高為1,如果池的四周墻壁的建造費單價為,池中的每道隔墻厚度不計,面積只計一面,隔墻的建造費單價為,池底的建造費單價為,則水池的長、寬分別為多少米時,污水池的造價最低?最低造價為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)x、y滿足約束條件,則z=2x﹣y的最大值為( ).

A.0 B.2 C.3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正數(shù)滿足的最小值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求函數(shù)y=的最大值;
(2)若函數(shù)y=a最大值為2,求正數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案