橢圓內的一點,過點P的弦恰好以P為中點,那么這弦所在的直線方程(   )
A.B.
C.D.
B.

試題分析:設弦的兩端點坐標為,因為點P是中點,所以=6,=4.又因為,兩式相減可得.
即直線的斜率為,所以所求的直線為.故選B.本題的解題采用點差法求出斜率是突破口.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點、,且線段的垂直平分線過定點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點F是拋物線C:的焦點,S是拋物線C在第一象限內的點,且|SF|=.

(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓直線與圓相切,且交橢圓兩點,是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標原點,若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設橢圓的左右頂點分別為A,B,動點,直線AS,BS與直線分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線交拋物線、兩點,則△(     )
A.為直角三角形B.為銳角三角形
C.為鈍角三角形D.前三種形狀都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則(       )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個頂點與兩個焦點構成等邊三角形,則橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案