橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成等邊三角形,則橢圓的離心率(   )
A.B.C.D.
B

試題分析:由題意,設(shè)橢圓方程,焦距為,由題意,,所以離心率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn),點(diǎn)在以、為焦點(diǎn)的橢圓上,且、構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與橢圓有公共焦點(diǎn),且橢圓過點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過點(diǎn)、、的圓為⊙,過點(diǎn)作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)、,試問直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為,是橢圓上異于的任一點(diǎn),直線分別交軸于點(diǎn),證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖示:已知拋物線的焦點(diǎn)為,過點(diǎn)作直線交拋物線兩點(diǎn),經(jīng)過兩點(diǎn)分別作拋物線的切線,切線相交于點(diǎn).

(1)當(dāng)點(diǎn)在第二象限,且到準(zhǔn)線距離為時(shí),求;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓內(nèi)的一點(diǎn),過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在的直線方程(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線過橢圓的左焦點(diǎn)F,且與橢圓相交于P、Q兩點(diǎn),M為PQ的中點(diǎn),O為原點(diǎn).若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2= 2x的準(zhǔn)線方程是(   )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

同步練習(xí)冊答案