2.已知A∈α,AB=5,$AC=2\sqrt{2}$,且AB與α所成角的正弦值為$\frac{4}{5}$,AC與α所成的角為45°,點B,C在平面α同側,則BC長的范圍為( 。
A.$[5-2\sqrt{2},5+2\sqrt{2}]$B.$[\sqrt{5},\sqrt{29}]$C.$[\sqrt{5},\sqrt{61}]$D.$[\sqrt{29},\sqrt{61}]$

分析 如圖所示,sinα=$\frac{4}{5}$,α為銳角,可得cos$α=\frac{3}{5}$.分別計算$cos(α+\frac{3π}{4})$,cos$(α-\frac{π}{4})$.當三點A,B,C在同一個平面時,BC分別取得最大值與最小值.

解答 解:如圖所示,
∵sinα=$\frac{4}{5}$,α為銳角,∴cos$α=\frac{3}{5}$.
∴$cos(α+\frac{3π}{4})$=$\frac{3}{5}×(-\frac{\sqrt{2}}{2})$-$\frac{4}{5}×\frac{\sqrt{2}}{2}$=-$\frac{7\sqrt{2}}{10}$,
cos$(α-\frac{π}{4})$=$\frac{3}{5}×\frac{\sqrt{2}}{2}+\frac{4}{5}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.
當三點A,B,C在同一個平面時,BC分別取得最大值與最小值.
最大值=$\sqrt{(2\sqrt{2})^{2}+{5}^{2}-2×2\sqrt{2}×5cos(π-α-\frac{π}{4})}$=$\sqrt{61}$,
最小值=$\sqrt{(2\sqrt{2})^{2}+{5}^{2}-2×2\sqrt{2}×5×\frac{7\sqrt{2}}{10}}$=$\sqrt{5}$.
∴BC長的范圍為$[\sqrt{5},\sqrt{61}]$.
故選:C.

點評 本題考查了空間位置關系、余弦定理、三角函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.在極坐標系中,點M坐標是$({2,\frac{π}{3}})$,曲線C的方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$);以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l經過點M和極點.
(1)寫出直線l的極坐標方程和曲線C的直角坐標方程;
(2)直線l和曲線C相交于兩點A、B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP于D,現(xiàn)將△PCD沿線段CD折成60°的二面角P-CD-A,設E,F(xiàn),G分別是PD,PC,BC的中點.
(1)求證:PA∥平面EFG;
(2)若M為線段CD上的一個動點,問點M在什么位置時,直線MF與平面EFG所成的角最大?并求此最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知R上的可導函數(shù)f(x)的圖象如圖所示,則不等式xf′(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓O:x2+y2=1,圓O關于直線x+y+2=0對稱的圓C.
(1)求圓C的方程;
(2)在直線l:2x+y-3=0上是否存在點P,過點P分別作圓O,圓C的兩條切線PA,PB分別為A,B,有PA=PB?若存在,求出點P的坐標,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,F(xiàn)G∥BC,EG∥AC,AB=2EF.
(1)在線段AD上是否存在點M,使GM∥平面ACF?并說明理由;
(2)若AC=BC=2AE,求二面角E-DG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),上、下頂點分別為B1、B2,右準線l:x=4.
(1)求橢圓的方程;
(2)連接B1F2并延長交橢圓于點M,連接B2M并延長交右準線于點N,求點N的坐標;
(3)是否存在非零常數(shù)λ,μ,使得對橢圓上任一點Q,總有$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$且AB=μ(其中點A在x軸上,點B在y軸上),若存在,求出常數(shù)λ,μ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在圓C:(x+1)2+y2=16內有一點A(1,0),Q為圓C上一點,AQ的垂直平分線與C、Q的連線交于點M.
(1)求點M的軌跡方程;
(2)在x軸上是否存在一定點N(t,0),使得點M與點N的距離和它到直線l:x=4的距離的比是常數(shù)λ?若存在,求出點N及λ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知拋物線y2=4x的準線與雙曲線4x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)交于A、B兩點,點F為拋物線的焦點,若△FAB為直角三角形,則雙曲線離心率為( 。
A.$\frac{\sqrt{17}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\frac{\sqrt{57}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

同步練習冊答案