分析 根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系,可以確定x與f′(x)同正負(fù)的區(qū)間即可.
解答 解:由圖可知函數(shù)f(x)在(-∞,-1),(1,+∞)單調(diào)遞增,∴在(-∞,-1),(1,+∞)區(qū)間f′(x)>0,在(-1,1)函數(shù)f(x)單調(diào)遞減,
∴f′(x)<0,所以x與f′(x)同正負(fù)的區(qū)間有:(-1,0 ),(1,+∞),
故不等式xf′(x)>0的解集為:(-1,0 )∪(1,+∞),
故答案為:(-1,0 )∪(1,+∞)
點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[5-2\sqrt{2},5+2\sqrt{2}]$ | B. | $[\sqrt{5},\sqrt{29}]$ | C. | $[\sqrt{5},\sqrt{61}]$ | D. | $[\sqrt{29},\sqrt{61}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | l與C相離 | B. | l與C相切 | ||
C. | l與C相交 | D. | 以上三個(gè)選項(xiàng)均有可能 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com