精英家教網 > 高中數學 > 題目詳情
已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.
考點:補集及其運算
專題:集合
分析:根據全集U與A,以及A的補集,確定出k的值,即可求出A.
解答: 解:∵全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},
∴k+8=6,4m-5=k2+3k+5;k+8=k2+3k+5,4m-5=6,
解得:k=-2,m=2;k=1或-3,m=
11
4

當k=-2,m=2時,k2+3k+5=3,不合題意;
當k=1,m=
11
4
時,全集U={3,6,9},A={3,9},∁UA={6},符合題意;
當k=-3,m=
11
4
時,全集U={3,5,6},A={3,5},∁UA={6},符合題意,
則A={3,9}或{3,5}.
點評:此題考查了補集及其運算,熟練掌握補集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設橢圓
x2
a2
+y2=1(a>1)的離心率為
3
2
,過點Q(1,0)任作一條弦交橢圓于C、D兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為直線x=4上任意一點,kPC,kPQ,kPD分別為直線PC,PQ,PD的斜率.是否存在實數λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數構成數列{an},每年發(fā)放的電動型汽車牌照數為構成數列{bn},完成下列表格,并寫出這兩個數列的通項公式;
a1=10 a2=9.5 a3=
 
   
a4=
 
     
b1=2 b2=
 
b3=
 
      
b4=
 
       
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A1(0,
2
),B1
6
,0),M(2,1),直線l:x=
4
3
6
,若曲線C上的動點P到點B1的距離等于P到直線l的距離的a倍且曲線C過點A1
(Ⅰ)求曲線C的方程;
(Ⅱ)設平行于OM(O為坐標原點)的直線l1在y軸上的截距為m(m≠0),且l1交曲線C于兩點A、B.
(ⅰ)求證:直線MA、MB與x軸始終圍成一個等腰三角形;
(ⅱ)若點A、B均位于y軸的右側,求直線MA的斜率k1的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

用0~9這10個數,可以組成多少個無重復數字且能被3整除的三位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a、b、c為△ABC的三邊,化簡:
(a-b-c)2
+
(-a-b)2
+
(b-a-c)2 

查看答案和解析>>

科目:高中數學 來源: 題型:

在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡是優(yōu)等品,壽命小于300天的燈泡是次品,其余的燈泡是正品.
壽命(天) 頻數 頻率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合計 200 1
(Ⅰ)根據頻率分布表中的數據,寫出a,b的值;
(Ⅱ)某人從燈泡樣品中隨機地購買了n(n∈N*)個,如果這n個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求n的最小值;
(Ⅲ)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數 5 10 15 10 5 5
贊成人數 4 6 9 6 3 4
(Ⅰ)完成被調查人員的頻率分布直方圖;

(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行進行追蹤調查,記選中的4人中不贊成“車輛限行”的人數為ξ,求隨機變量ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-2x+2m=0},若A∩B=B,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案