四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,E是側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求證:PA⊥平面ABCD.
考點(diǎn):直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(1)根據(jù)線面平行的判定定理即可證明PB∥平面ACE;
(2)根據(jù)線面垂直的判定定理即可證明PA⊥平面ABCD.
解答: 解:(1)連結(jié)BD交AC于O,連結(jié)OE,
∵E是側(cè)棱PD的中點(diǎn),∴OE是△PBD的中位線,
則OE∥PB,
∵OE⊆△ACE,
∴PB∥平面ACE;
(2)∵底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,
∴BC⊥AB,CD⊥AD,
即CB⊥平面PAB,CD⊥PAD,
則CB⊥PA,CD⊥PA,
∵CB∩CD=C,
∴PA⊥平面ABCD.
點(diǎn)評(píng):本題主要考查空間直線和平面的平行和垂直的判斷,要求熟練掌握相應(yīng)的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0,求證:
a+b
-
a
a
-
a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
sinx
+
-cosx
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一正方體的內(nèi)切球體積為
3
,則該正方體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出所有同時(shí)滿足以下兩個(gè)條件的非空集合M.
①M(fèi)⊆{1,2,3,4,5};  
②若a∈M,則6-a∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)售出時(shí),能賣出400個(gè),已知這種商品每個(gè)漲價(jià)1元,其銷售量就減少10個(gè),為了取得最大利潤(rùn),每個(gè)售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2+bx+c在x=1處的切線斜率為2,且導(dǎo)函數(shù)f′(x)的圖象關(guān)于直線x=
1
3
對(duì)稱.
(1)求a,b的值;
(2)若f(x)的圖象與g(x)=x2的圖象有且僅有三個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
9
+
y2
4
=1的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,若△PF1F2是直角三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于2的正整數(shù)),p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(5,2,4,3,1)中的逆序數(shù)等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案