已知函數(shù)f(x)=a+
1
4x+1
滿足f(-x)+f(x)=0,則a的值為(  )
A.1B.
1
4
C.-
1
2
D.-1
∵f(-x)+f(x)=0,∴函數(shù)f(x)為奇函數(shù),故有f(0)=0,即 a+
1
40+1
=0,解得a=-
1
2
,
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=
log2x,x>0
2x,x<0
,則f(
1
4
)+f(-2)
=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的最大值不大于,又當,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的偶函數(shù)的部分圖像如右圖所示,則在上,下列函數(shù)中與的單調性不同的是(     )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f(x)=4x2-2x+1,g(x)=3x2+1,則f(2)=______,f(-2)=______,g(-1)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)的定義域為[-3,+∞),且f(6)=f(-3)=2.f′(x)為f(x)的導函數(shù),f′(x)的圖象如圖所示.若正數(shù)a,b滿足f(2a+b)<2,則
b+3
a-2
的取值范圍是(  )
A.(-
3
2
,3)
B.(-∞,-
3
2
)∪(3,+∞)
C.(-
9
2
,3)
D.(-∞,-
9
2
)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將正整數(shù)12分解成兩個正整數(shù)的乘積有:1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對值最小的,我們稱3×4為12的最佳分解,當p×q(p≤q且p、q∈N*)是正整數(shù)n的最佳分解時,我們規(guī)定函數(shù)f(n)=
p
q
,例如f(12)=
3
4
,關于函數(shù)f(n)有下列敘述:
①f(1)=
1
7

②f(24)=
3
8

③f(28)=
4
7

④f(144)=
9
16

其中正確的序號為______(填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=4x2-4ax+a2-2a+2在區(qū)間[0,2]上有最小值3,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
2x,(x≤0)
f(x-3)(x>0)
,則f(5)=( 。
A.32B.16C.
1
2
D.
1
32

查看答案和解析>>

同步練習冊答案