11.設(shè)α是第二象限角,P(x,4)為其終邊上一點(diǎn),且$cosα=\frac{1}{5}x$,則x=-3,tanα=-$\frac{4}{3}$.

分析 由條件利用任意角的三角函數(shù)的定義,求得x的值,可得tanα的值.

解答 解:∵α是第二象限角,P(x,4)為其終邊上的一點(diǎn),∴x<0,
∵cosα=$\frac{x}{5}$=$\frac{x}{\sqrt{{x}^{2}+16}}$,
∴x=-3,
∴tanα=-$\frac{4}{3}$,
故答案為:-3,-$\frac{4}{3}$

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,則下列判斷錯誤的是(  )
A.A=2B.ω=2C.f(0)=1D.φ=$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,其短軸的下端點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),M是直線l:x=2上的動點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以為OM直徑的圓C2相交于P,Q兩點(diǎn),與橢圓C1相交于A,B兩點(diǎn),如圖所示.?
①若PQ=$\sqrt{6}$,求圓C2的方程;
②?設(shè)C2與四邊形OAMB的面積分別為S1,S2,若S1=λS2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(2,4),函數(shù)f(x)=x2,四邊形ABCD是矩形,則陰影區(qū)域的面積等于( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C的焦點(diǎn)F與橢圓3x2+4y2=3的右焦點(diǎn)重合.
(1)求拋物線C的方程;
(2)過焦點(diǎn)F作互相垂直的兩條直線分別交拋物線C于A,M和N,B,求四邊形ABMN的面積S的最小值及S最小值時對應(yīng)的兩條直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{3}}}{2}$,過橢圓的左焦點(diǎn)F且傾斜角為30°的直線與圓x2+y2=b2相交所得弦的長度為1.
(I)求橢圓E的方程;
(Ⅱ)若動直線l交橢圓E于不同兩點(diǎn)M(x1,y1),N(x2,y2),設(shè)$\overrightarrow{OP}$=(bx1,ay1),$\overrightarrow{OQ}$=((bx2,ay2),O為坐標(biāo)原點(diǎn).當(dāng)以線段PQ為直徑的圓恰好過點(diǎn)O時,求證:△MON的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計(jì)如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.${∫}_{-1}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{2}$$+\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正實(shí)數(shù)a,b,c滿足a+2b+c=1,$\frac{1}{a+b}$+$\frac{16(a+b)}{b+c}$的最小值為9.

查看答案和解析>>

同步練習(xí)冊答案