13.設(shè)$\overrightarrow{a}$、$\overrightarrow$分別是兩條異面直線l1、l2的方向向量,向量$\overrightarrow{a}$、$\overrightarrow$的夾角的取值范圍為A.l1、l2所成的角的取值范圍為B,則“a∈A”是“a∈B”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 分別求出A、B的范圍根據(jù)集合的包含關(guān)系判斷即可.

解答 解:向量$\overrightarrow{a}$、$\overrightarrow$的夾角的取值范圍為A,
故A∈[0,π],
l1、l2所成的角的取值范圍為B,
則B=[0,$\frac{π}{2}$],
故“a∈A”是“a∈B”必要不充分條件,
故選:C.

點評 本題考查了角的范圍,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且滿足$2bcos({C-\frac{π}{3}})=a+c$.
(1)求角B的大。
(2)若b=$\sqrt{3}$,求ac的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}滿足a1=2,且${a_n}=\frac{{2n{a_{n-1}}}}{{{a_{n-1}}+n-1}}(n≥2,n∈{N^*})$,則an=$\frac{n•{2}^{n}}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長為7cm,腰長為2$\sqrt{2}$cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從B點開始由左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x(0≤x≤7),左邊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,畫出程序框圖,并寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)是定義在R上連續(xù)的偶函數(shù),且當(dāng)x∈(0,+∞)時,f(x)是單調(diào)函數(shù),則滿足條件f(x)=f(1-$\frac{1}{x+3}$)的所有x之積為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,則實數(shù)b的取值范圍是(-∞,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若正實數(shù)m,n滿足$\frac{2}{m}+\frac{1}{n}=\int_{-2}^2{({x+\frac{1}{π}\sqrt{4-{x^2}}})}dx$,則log2(m+2n)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是由圓柱與兩個半球組合而成的幾何體的三視圖,則該幾何體的體積與表面積分別為( 。
A.$\frac{10}{3}π,8π$B.$\frac{16}{3}π,8π$C.$\frac{10}{3}π,10π$D.$\frac{16}{3}π,10π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合U={-1,0,1,2,3,4,5},A={1,2,3},B={-1,0,1,2},則A∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{3}D.{2}

查看答案和解析>>

同步練習(xí)冊答案