【題目】已知集合M={x|x2﹣4x+3<0},N={x||x﹣3|≤1}.
(1)求出集合M,N;
(2)試定義一種新集合運算△,使M△N={x|1<x<2};
(3)若有P={x|| |≥ },按(2)的運算,求出(N△M)△P.
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)若A∩B=B,求m的取值范圍;
(2)若A∩B≠,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐V﹣ABCD中,底面ABCD是正方形,側(cè)棱VA⊥底面ABCD,點E為VA的中點.
(Ⅰ)求證:VC∥平面BED;
(Ⅱ)求證:平面VAC⊥平面BED.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請200名同學,每人隨機寫下一個都小于1的正實數(shù)對(x,y);再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(x,y)的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計的值.假如統(tǒng)計結(jié)果是m=56,那么可以估計__________.(用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最大值和最小值;
(2)設曲線與軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為, , 是橢圓的長軸的兩個端點(位于右側(cè)),是橢圓在軸正半軸上的頂點.
(1)求橢圓的標準方程;
(2)是否存在經(jīng)過點且斜率為的直線與橢圓交于不同兩點和,使得向量與共線?如果存在,求出直線方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a,b∈R,ab≠0,給出下面四個命題:①a2+b2≥﹣2ab;② ≥2;③若a<b,則ac2<bc2;④若 .則a>b;其中真命題有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e﹣x , 其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com