【題目】設集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)若A∩B=B,求m的取值范圍;
(2)若A∩B≠,求m的取值范圍.

【答案】
(1)解:∵A∩B=B,

∴BA,

B=,則m+1>2m﹣1,即m<2時,BA;

B≠,則m+1≤2m﹣1,即m≥2時,∵BA,∴ ,∴﹣3≤m≤3,∴2≤m≤3,

綜上,m≤3


(2)解:考慮A∩B=

∵x∈R,且A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},

∴①若B=,即m+1>2m﹣1,得m<2時滿足條件;

②若B≠,則m+1≤2m﹣1,即m≥2時,要滿足的條件是m+1>5或2m﹣1<﹣2,解得m>4.

綜上,有m<2或m>4,

∴A∩B≠,m的取值范圍是2≤m≤4


【解析】(1)若A∩B=B,則BA,說明B是A的子集,需要注意集合B=的情形.(2)考慮A∩B=,再求補集.
【考點精析】認真審題,首先需要了解集合的交集運算(交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當x為某一實數(shù)時可使”是不可能事件
③“明天順德要下雨”是必然事件
④“從100個燈泡中取出5個,5個都是次品”是隨機事件.
其中正確命題的個數(shù)是 ( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結論,其中正確的個數(shù)為( 。
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與方差均沒有變化;
②在線性回歸分析中,相關系數(shù)r越小,表明兩個變量相關性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x2﹣mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(1)若0<m≤4,求函數(shù)g(m)的解析式;
(2)定義在(﹣∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當x>0時,h(x)=g(x),若h(t)>h(4),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為(
·(1)小明離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學;
·(2)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
·(3)小明出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速.

A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的有(
①命題x∈R,使sin x+cos x= 的否定是“對x∈R,恒有sin x+cos x≠ ”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點的坐標都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進制數(shù)66化為二進制數(shù)是1 000 0102
A.①②③④
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中, , ,四邊形為矩形,且平面, .

(1)求證: 平面;

(2)點在線段(含端點)上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|x2﹣4x+3<0},N={x||x﹣3|≤1}.
(1)求出集合M,N;
(2)試定義一種新集合運算△,使M△N={x|1<x<2};
(3)若有P={x|| |≥ },按(2)的運算,求出(N△M)△P.

查看答案和解析>>

同步練習冊答案