在函數(shù)f(x)=x2(x>0)的圖象上依次取點(diǎn)列Pn滿足:Pn(n,f(n)),n=1,2,3,….設(shè)A為平面上任意一點(diǎn),若A關(guān)于P1的對稱點(diǎn)為A1,A1關(guān)于P2的對稱點(diǎn)為A2,…,依此類推,可在平面上得相應(yīng)點(diǎn)列A,A1,A2,…,An.則當(dāng)n為偶數(shù)時,向量的坐標(biāo)為   
【答案】分析:利用向量的運(yùn)算法則將 有以Pn為起點(diǎn)終點(diǎn)的向量表示,利用向量的坐標(biāo)公式求出各向量的坐標(biāo),利用等比數(shù)列的前n項(xiàng)和公式求出向量的坐標(biāo).
解答:解:=++…+,
由于 =,得 =2( ++…+
=2({1,2}+{1,23}+…+{1,2n-1})=2{ ,}={n,}
故答案為:(n,
點(diǎn)評:本題考查中點(diǎn)坐標(biāo)公式、向量的坐標(biāo)公式、圖象的平移變換、等比數(shù)列的前n項(xiàng)和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,…
(1)證明數(shù)列{lg(1+an)}是等比數(shù)列;
(2)設(shè)Tn=(1+a1)(1+a2)…(1+an),求Tn及數(shù)列{an}的通項(xiàng);
(3)記bn=
1
an
+
1
an+2
,求數(shù)列{bn}的前n項(xiàng)Sn,并證明Sn+
2
3Tn-1
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

形如
ab
cd
的式子叫做二行二列矩陣,定義矩陣的一種運(yùn)算
ab
cd
x
y
=
ax+bx
cx+dy
.該運(yùn)算的幾何意義為平面上的點(diǎn)(x,y)在矩陣
ab
cd
的作用下變換成點(diǎn)(ax+by,cx+dy).
(1)設(shè)點(diǎn)M(-2,1)在
01
10
的作用下變換成點(diǎn)M′,求點(diǎn)M′的坐標(biāo);
(2)設(shè)數(shù)列{an} 的前n項(xiàng)和為Sn ,且對任意正整數(shù)n,點(diǎn)A(Sn,n)在
01
10
的作用下變換成的點(diǎn)A′在函數(shù)f(x)=x2+x的圖象上,求an的表達(dá)式;
(3)在(2)的條件下,設(shè)bn為數(shù)列{1-
1
an
}的前n項(xiàng)的積,是否存在實(shí)數(shù)a使得不等式bn
an+1
<a
對一切n∈N*都成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(2,3)在函數(shù)f(x)=x2-a,x∈(1,+∞)的圖象上,則f(x)的反函數(shù)f-1(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,…
(1)證明:數(shù)列{lg(1+an)}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
1
an
+
1
an+2
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,對一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且過點(diǎn)Pn(n,Sn)的切線的斜率為kn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差數(shù)列{cn}的任一項(xiàng)cn∈Q∩R,其中c1是Q∩R中的最小數(shù),110<c10<115,求{cn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案