已知某圓的極坐標方程是數(shù)學公式
求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點(x,y)中xy的最大值和最小值.

解:(1)普通方程:x2+y2-4x-4y+6=0…(2分);
參數(shù)方程: (θ為參數(shù))…(4分)
(2)xy=(2+cosθ)(2+sinθ)=4+2(sinθ+cosθ)+2sinθcosθ…(5分)
令sinθ+cosθ=t∈[-,],2sinθcosθ=t2-1
,則xy=t2+2t+3…(6分)
當t=-時,最小值是1;…(8分)
當t=時,最大值是9;…(10分)
分析:(1)圓的極坐標方程是,化為直角坐標方程即 x2+y2-4x-4y+6=0,從而進一步得到其參數(shù)方程.
(2)因為 xy=(2+cosθ)(2+sinθ)=4+2(sinθ+cosθ)+2sinθcosθ,再令sinθ+cosθ=t∈[-,],則xy=t2+2t+3,根據(jù)二次函數(shù)的最值,求得其最大值和最小值.
點評:本題考查把極坐標方程化為直角坐標方程的方法,兩角和的正弦公式,圓的參數(shù)方程,得到圓的參數(shù)方程,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某圓的極坐標方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程,并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.(5分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=
.
1
1
.
,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•?谀M)已知某圓的極坐標方程是p2-4
2
pcos(θ-
π
4
)+6=0

求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點(x,y)中xy的最大值和最小值.

查看答案和解析>>

同步練習冊答案