分析 (1)由題意可得到an+1=1+$\frac{2}{{a}_{n}}$,代入化簡可得數(shù)列{$\frac{{a}_{n}-2}{{a}_{n}+1}$}是以-$\frac{1}{2}$為首項、-$\frac{1}{2}$為公比的等比數(shù)列,
(2)由(1)可以求出數(shù)列{an}的通項公式.
解答 解:(1)a1=1,當n∈N時,an+1an=an+2,
∴an+1=1+$\frac{2}{{a}_{n}}$,
∴$\frac{{a}_{n+1}-2}{{a}_{n+1}+1}$=$\frac{1+\frac{2}{{a}_{n}}-2}{1+\frac{2}{{a}_{n}}+1}$=$\frac{2-{a}_{n}}{2+2{a}_{n}}$=-$\frac{1}{2}$•$\frac{{a}_{n}-2}{{a}_{n}+1}$,
∵$\frac{{a}_{1}-2}{{a}_{1}+1}$=-$\frac{1}{2}$,
∴數(shù)列{$\frac{{a}_{n}-2}{{a}_{n}+1}$}是以-$\frac{1}{2}$為首項、-$\frac{1}{2}$為公比的等比數(shù)列,
(2)由(1)可知,$\frac{{a}_{n}-2}{{a}_{n}+1}$=-$\frac{1}{2}$×(-$\frac{1}{2}$)n-1=(-$\frac{1}{2}$)n,
∴an-2=(-$\frac{1}{2}$)n•an+(-$\frac{1}{2}$)n,
∴an(1-(-$\frac{1}{2}$)n)=2+(-$\frac{1}{2}$)n,
∴an=$\frac{2+(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})^{n}}$=$\frac{{2}^{n+1}+(-1)^{n}}{{2}^{n}-(-1)^{n}}$.
點評 本題考查數(shù)列的通項公式的求法,解題時要認真審題,注意構造法的合理運用,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0<x≤1} | B. | {x|0<x<1} | C. | {x|-1≤x<3} | D. | {x|1≤x<3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 200 | B. | 240 | C. | -60 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com