17.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1的一個(gè)焦點(diǎn)在直線x+y=5上,則雙曲線的漸近線方程為(  )
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{2\sqrt{2}}{3}$xD.y=±$\frac{3\sqrt{2}}{4}$x

分析 根據(jù)題意,由雙曲線的方程可以確定其焦點(diǎn)在位置,由直線的方程可得直線與x軸交點(diǎn)的坐標(biāo),即可得雙曲線焦點(diǎn)的坐標(biāo),由雙曲線的幾何性質(zhì)可得9+m=25,解可得m的值,即可得雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而由雙曲線的漸近線方程計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1,則其焦點(diǎn)在x軸上,
直線x+y=5與x軸交點(diǎn)的坐標(biāo)為(5,0),
則雙曲線的焦點(diǎn)坐標(biāo)為(5,0),
則有9+m=25,
解可得,m=16,
則雙曲線的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,
其漸近線方程為:y=±$\frac{4}{3}$x,
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出焦點(diǎn)的坐標(biāo),確定m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=f(x)的定義域?yàn)镽,f(-2)=3,對(duì)任意x∈R,f′(x)>3,則f(x)≥3x+9的解集為( 。
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)隨機(jī)變量X~B(8,p),且D(X)=1.28,則概率p的值是( 。
A.0.2B.0.8C.0.2或0.8D.0.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知隨機(jī)變量X服從正態(tài)分布N(100,4),若P(102<X<m)=0.1359,則m等于[駙:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544]( 。
A.103B.104C.105D.106

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.有兩盒大小形狀完全相同且標(biāo)有數(shù)字的小球,其中一盒5個(gè)小球標(biāo)的數(shù)字分別為1,2,3,4,5,另一盒4個(gè)小球標(biāo)的數(shù)字分別為2,3,6,8,從兩個(gè)盒子中隨機(jī)各摸出一個(gè)小球,則這兩個(gè)小球上標(biāo)的數(shù)字為相鄰整數(shù)的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.P為曲線C1:y=ex上一點(diǎn),Q為曲線C2:y=lnx上一點(diǎn),則|PQ|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)a=log${\;}_{\frac{1}{2}}$5,b=($\frac{1}{3}$)0.2,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a<b<cB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)A(3,-1)的直線被圓C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直線的方程是( 。
A.x+2y-1=0B.2x+y-5=0C.2x-y-7=0D.x-2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)=ax3+3x-1(x∈R),若對(duì)于任意的x∈[0,1]都有f(x)≤0成立,則實(shí)數(shù)a的取值范圍是(-∞,-4].

查看答案和解析>>

同步練習(xí)冊(cè)答案