【題目】已知函數(shù).

1的切線與直線平行,求的值;

2不等式對(duì)于的一切值恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;2.

【解析】

試題分析:1由導(dǎo)數(shù)的幾何意義可知,據(jù)此即可求得的值;2不等式對(duì)于的一切值恒成立,等價(jià)于對(duì)于的一切值恒成立.構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其在上的單調(diào)性,求出最小值,再構(gòu)造函數(shù),討論其單調(diào)性,得到滿足題意的參數(shù)范圍.

試題解析:1函數(shù)的定義域?yàn)?/span>,

,,由題意得,

解得: .

2不等式對(duì)于的一切值恒成立,等價(jià)于對(duì)于

的一切值恒成立.

,則.

,得,當(dāng)變化時(shí),的變化情況如下表

_

+

極小

的最小值為.

,則,令,得.

當(dāng)變化時(shí),的變化情況如下表:

極大值

當(dāng)時(shí),函數(shù)上為增函數(shù),,

上的最小值,滿足題意.

當(dāng)時(shí),函數(shù)上為減函數(shù),

上的最小值,滿足題意.

當(dāng)時(shí),函數(shù)上為減函數(shù),

上的最小值,不滿足題意.

綜上,所求實(shí)數(shù)的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知,乒乓球是中國(guó)的國(guó)球,乒乓球隊(duì)內(nèi)部也有著很嚴(yán)格的競(jìng)爭(zhēng)機(jī)制,為了參加國(guó)際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進(jìn)行一場(chǎng)內(nèi)部對(duì)抗賽,按以往多次比賽的統(tǒng)計(jì),甲獲勝的概率分別為,,且各場(chǎng)比賽互不影響

1若甲至少獲勝兩場(chǎng)的概率大于,則甲入選參加國(guó)際大賽參賽名單,否則不予入選,問(wèn)甲是否會(huì)入選最終的大名單?

2求甲獲勝場(chǎng)次的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最小值

(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:直線與圓有兩個(gè)交點(diǎn);命題:.

(1)若為真命題,求實(shí)數(shù)的取值范圍;

(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左點(diǎn)與點(diǎn)的距離為

(1)求橢圓方程;

(2)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx+φ

0

π

x

Asinωx+φ

0

5

-5

0

1請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx的解析式;

2圖象上所有點(diǎn)向左平行移動(dòng)個(gè)單位長(zhǎng)度,得到的圖象,求的圖象離原點(diǎn)O最近的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑, 以防止害蟲的危害, 但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥, 食用時(shí)需要用清水清洗干凈, 下表是用清水(單位:千克) 清洗該蔬菜千克后, 蔬菜上殘留的農(nóng)藥(單位:微克) 的統(tǒng)計(jì)表:

(1)在下面的坐標(biāo)系中, 描出散點(diǎn)圖, 并判斷變量的相關(guān)性;

(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程, ,計(jì)算平均值,完成以下表格(填在答題卡中) ,求出的回歸方程.( 精確到)

(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于微克時(shí)對(duì)人體無(wú)害, 為了放心食用該蔬菜, 請(qǐng)

估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到,參考數(shù)據(jù))

(附:線性回歸方程中系數(shù)計(jì)算公式分別為;

, )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一對(duì)父子參加一個(gè)親子摸獎(jiǎng)游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個(gè)的甲袋子里隨機(jī)取兩個(gè)球,兒子在裝有紅色、白色、黑色球各一個(gè)的乙袋子里隨機(jī)取一個(gè)球,父子倆取球互相獨(dú)立,兩人各摸球一次合在一起稱為一次摸獎(jiǎng),他們?nèi)〕龅娜齻(gè)球的顏色情況與他們獲得的積分對(duì)應(yīng)如下表:

所取球的情況

三個(gè)球均為紅色

三個(gè)球均為不同色

恰有兩球?yàn)榧t色

其他情況

所獲得的積分

180

90

60

0

(1)求一次摸獎(jiǎng)中,所取的三個(gè)球中恰有兩個(gè)是紅球的概率;

(2)設(shè)一次摸獎(jiǎng)中,他們所獲得的積分為,的分布列及均值(數(shù)學(xué)期望);

(3)按照以上規(guī)則重復(fù)摸獎(jiǎng)三次,求至少有兩次獲得積分為60的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 為正實(shí)數(shù)

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2求證: ;

3)若函數(shù)且只有個(gè)零點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案