已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,邊長為2a,AD=DE=2AB,F(xiàn)為CD的中點.

(1)求證:AF∥平面BCE;

(2)求證:平面BCE⊥平面CDE;

(3)求直線BF和平面BCE所成角的正弦值.

答案:
解析:

  解:依題意,建立如圖所示的坐標(biāo)系,則

  

  的中點,∴

  (1)證明,

  ,平面,

  平面  4分

  (2)證明:∵,

  ,∴

  平面,又平面,∴平面平面CDE  8分

  (3):設(shè)平面的法向量為,由可得:

  ,取,設(shè)和平面所成的角為,則

  ∴直線和平面所成角的正弦值為  13分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點
(Ⅰ) 求證:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(Ⅰ)求證AF∥平面BCE;
(Ⅱ)設(shè)AB=1,求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ABC為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(I)求證:AF∥平面BCE;
(II)求二面角D-BC-E的正弦值.

查看答案和解析>>

同步練習(xí)冊答案