【題目】如圖所示,為正方體,給出以下五個結(jié)論:

平面

⊥平面;

與底面所成角的正切值是;

二面角的正切值是;

過點且與異面直線 均成70°角的直線有4條.

其中,所有正確結(jié)論的序號為________

【答案】①②④⑤

【解析】

依據(jù)線面平行的判斷和線面垂直的判斷可知①②正確,與底面所成角的正切值為,而二面角的正切值為,故③錯④正確所成的角為,故與它們所成的角均為的直線共有4條.

,平面,平面,故平面.①對.

,,故平面,故②正確.

的中點,連接,則是二面角的平面角,又,故④正確.

與平面所成的角為,而,故③錯誤.

所成的角為,因,故過 且與它們所成的角均為的直線有4條,故⑤正確.

綜上,填①②④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點P(1,2)引直線,使A(2,3),B(4,-5)到它的距離相等,則這條直線的方程為 (  )

A. 4x+y-6=0

B. x+4y-6=0

C. 2x+3y-7=0或x+4y-6=0

D. 3x+2y-7=0或4x+y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)f(x)=cosx(sinx+cosx)﹣ 的圖象向右平移φ個單位,所得函數(shù)是奇函數(shù),則φ的最小正值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,設(shè)內(nèi)角A、B、C的對邊分別為a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大;
(2)若b=4 ,且c= a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列各題中pq的什么條件.

(1)p:|x|=|y|,q:x=y;

(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;

(3)p:四邊形的對角線互相平分,q:四邊形是矩形;

(4)p:x2+y2=r2(r>0)與直線ax+by+c=0相切,q:c2=(a2+b2)r2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,已知平面 , ,

(I)求證: 平面;

(II)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1 , F2 , P為雙曲線上一點,且 =0,△F1PF2的內(nèi)切圓半徑r=2a,則雙曲線的離心率e=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax2+bx+c(a>0),
(1)當(dāng)a=1,b=2,若|f(x)|﹣2=0有且只有兩個不同的實根,求實數(shù)c的取值范圍;
(2)設(shè)方程f(x)=x的兩個實根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1 ,試判斷f(t)與x1的大小,并給出理由.

查看答案和解析>>

同步練習(xí)冊答案