分析 (I)設(shè)AE中點(diǎn)M,以D為原點(diǎn)建立空間坐標(biāo)系,求出$\overrightarrow{MF}$和$\overrightarrow{HG}$的坐標(biāo),得出$\overrightarrow{HG}=\overrightarrow{MF}$,從而得出HG∥MF,故而HG∥平面AEF;
(II)求出$\overrightarrow{AE}$和平面ACF的法向量$\overrightarrow{n}$的坐標(biāo),設(shè)所求線面角為θ,則sinθ=|cos<$\overrightarrow{n},\overrightarrow{AE}$>|,利用同角三角函數(shù)的關(guān)系得出tanθ.
解答 證明:(I)以D為原點(diǎn),以DA,DC,DE為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
設(shè)AB=2,AE的中點(diǎn)為M,則M(1,0,$\sqrt{2}$),H(1,0,0),F(xiàn)(2,2,2$\sqrt{2}$),G(2,2,$\sqrt{2}$).
$\overrightarrow{HG}$=(1,2,$\sqrt{2}$),$\overrightarrow{MF}$=(1,2,$\sqrt{2}$).
∴$\overrightarrow{HG}=\overrightarrow{MF}$,
∴HG∥MF,又HG?平面AEF,MF?平面AEF,
∴GH∥平面AEF.
(II)A(2,0,0),F(xiàn)(2,2,2$\sqrt{2}$),C(0,2,0),E(0,0,2$\sqrt{2}$).
∴$\overrightarrow{AE}$=(-2,0,2$\sqrt{2}$),$\overrightarrow{AF}$=(0,2,2$\sqrt{2}$),$\overrightarrow{AC}$=(-2,2,0),
設(shè)平面ACF的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AF}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$.
∴$\left\{\begin{array}{l}{2y+2\sqrt{2}z=0}\\{-2x+2y=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(-$\sqrt{2}$,-$\sqrt{2}$,1).
∴$\overrightarrow{n}•\overrightarrow{AE}$=4$\sqrt{2}$,|$\overrightarrow{n}$|=$\sqrt{5}$,|$\overrightarrow{AE}$|=2$\sqrt{3}$.
∴cos<$\overrightarrow{n},\overrightarrow{AE}$>=$\frac{\overrightarrow{n}•\overrightarrow{AE}}{|\overrightarrow{n}||\overrightarrow{AE}|}$=$\frac{2\sqrt{30}}{15}$.
設(shè)直線EA與平面ACF所成角為θ,則sinθ=$\frac{2\sqrt{30}}{15}$,
即直線EA與平面ACF所成角的正弦值為$\frac{2\sqrt{30}}{15}$.
點(diǎn)評(píng) 本題考查了線面平行的判定,線面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com