(本小題滿分12分)
(Ⅰ)已知函數(shù)上具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知向量兩兩所成的角相等,且,,求

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)因?yàn)楹瘮?shù)是二次函數(shù),其圖象對(duì)稱軸為 
上具有單調(diào)性,
所以,      
解得,
故實(shí)數(shù)的取值范圍是.   
(Ⅱ)當(dāng) 向量兩兩所成的角為時(shí),=  
當(dāng) 向量兩兩所成的角為時(shí),
=
=       
所以=
= 
考點(diǎn):二次函數(shù)的性質(zhì) 向量運(yùn)算
點(diǎn)評(píng):第一問(wèn)中考查二次函數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題的關(guān)鍵是靈活應(yīng)用二次函數(shù)的性質(zhì),第二問(wèn)中主要把握好向量模和數(shù)量積間的轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若不等式的解集為,求的取值范圍;
(2)解關(guān)于的不等式
(3)若不等式對(duì)一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)滿足下列條件:①當(dāng)時(shí),的最小值為,且圖像關(guān)于直線對(duì)稱;②當(dāng)時(shí),恒成立.
(1)求的值;  
(2)求的解析式;
(3)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)某旅游景點(diǎn)預(yù)計(jì)2013年1月份起前個(gè)月的旅游人數(shù)的和(單位:萬(wàn)人)與的關(guān)系近似滿足已知第月的人均消費(fèi)額(單位:元)與的近似關(guān)系是
(1)寫出2013年第x月的旅游人數(shù)(單位:萬(wàn)人)與x的函數(shù)關(guān)系式;
(2)試問(wèn)2013年哪個(gè)月的旅游消費(fèi)總額最大,最大旅游消費(fèi)額為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(zhǎng)(梯形的上底線段與兩腰長(zhǎng)的和)要最小.

(1)求外周長(zhǎng)的最小值,并求外周長(zhǎng)最小時(shí)防洪堤高h(yuǎn)為多少米?
(2)如防洪堤的高限制在的范圍內(nèi),外周長(zhǎng)最小為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)判斷函數(shù)在定義域上的單調(diào)性;
(2)利用題(1)的結(jié)論,,求使不等式上恒成立時(shí)的實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

商場(chǎng)銷售某一品牌的羊毛衫,購(gòu)買人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購(gòu)買人數(shù)越少.把購(gòu)買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無(wú)效價(jià)格,已知無(wú)效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場(chǎng)以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問(wèn):
(1)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)已知函數(shù)為偶函數(shù),且在上為增函數(shù).
(1)求的值,并確定的解析式;
(2)若,是否存在實(shí)數(shù)使在區(qū)間上的最大值為2,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤(rùn)依次為(萬(wàn)元)和(萬(wàn)元),它們與投入的資金(萬(wàn)元)的關(guān)系,據(jù)經(jīng)驗(yàn)估計(jì)為:,  今有3萬(wàn)元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤(rùn),應(yīng)對(duì)甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案