設(shè)二次函數(shù)滿足下列條件:①當(dāng)時(shí),的最小值為,且圖像關(guān)于直線對(duì)稱;②當(dāng)時(shí),恒成立.
(1)求的值;
(2)求的解析式;
(3)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.
(1)(2)(3)
解析試題分析:(1)在②中令,有,故. 4分
(2)當(dāng)時(shí),的最小值為且二次函數(shù)關(guān)于直線對(duì)稱,
故設(shè)此二次函數(shù)為. 6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/e/gogfc1.png" style="vertical-align:middle;" />,得. 8分
所以. 10分
(3)記,
顯然 ,在區(qū)間上恒有,即, 12分
令,得,由的圖像只須, 15分
解得. 16分
考點(diǎn):本小題主要考查二次函數(shù)的圖象和性質(zhì)及恒成立問(wèn)題.
點(diǎn)評(píng):二次函數(shù)是高中學(xué)習(xí)中比較重要的一類(lèi)函數(shù),要準(zhǔn)確掌握,靈活求解;恒成立問(wèn)題一般轉(zhuǎn)化為最值問(wèn)題解決,這是經(jīng)?疾榈念}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷(xiāo)售額(單位:萬(wàn)元)與日產(chǎn)量的函數(shù)關(guān)系式
已知每日的利潤(rùn),且當(dāng)時(shí),.
(1)求的值;
(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果每件商品在該售價(jià)的基礎(chǔ)上每上漲1元,則每個(gè)月少賣(mài)10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為元.(14分)
(1)求與的函數(shù)關(guān)系式并直接寫(xiě)出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B兩地的路程為240千米.某經(jīng)銷(xiāo)商每天都要用汽車(chē)或火車(chē)將噸保鮮品一次 性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車(chē)和火車(chē)中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.
現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:
貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表
運(yùn)輸工具 | 運(yùn)輸費(fèi)單價(jià):元/(噸•千米) | 冷藏費(fèi)單價(jià):元/(噸•時(shí)) | 固定費(fèi)用:元/次 |
汽車(chē) | 2 | 5 | 200 |
火車(chē) | 1.6 | 5 | 2280 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
(Ⅰ)已知函數(shù)在上具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知向量、、兩兩所成的角相等,且,,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為2.8萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷(xiāo)售收入R(x)(萬(wàn)元)滿足
,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷(xiāo)售收入-總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com