如圖,棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015380672.png)
中,四邊形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015380507.png)
是菱形,四邊形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015411500.png)
是矩形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410154111133.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410154272165.png)
(1)求證:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015442752.png)
;
(2)求點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015458339.png)
到平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015473510.png)
的距離;
(3)求直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015489436.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015411500.png)
所成角的正切值.
(1)證明過(guò)程詳見(jiàn)試題解析;(2)點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015458339.png)
到平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015567344.png)
;(3)直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015583435.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015598512.png)
所成角的正切值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015645471.png)
.
試題分析:(1)先證明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015661413.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015676522.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015692433.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015676522.png)
,∴平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015723773.png)
;(2)先求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015754580.png)
,即可知點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015770337.png)
到面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離,而點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015801469.png)
到面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離相等,所以點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015458339.png)
到平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015567344.png)
;(3)先找出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015910427.png)
在面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015941507.png)
的射影
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015957414.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015973550.png)
為直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015583435.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015598512.png)
所成線(xiàn)面角,放在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016082684.png)
中即可求出直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015583435.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015598512.png)
所成角的正切值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015645471.png)
.
試題解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410161442869.png)
4分
(2)解:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410161751599.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016191521.png)
,所以點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015801469.png)
到面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離相等, 6分
設(shè)點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015770337.png)
到面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離相等,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410162691039.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016285688.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016300537.png)
為正三角形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410163161131.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016331837.png)
7分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410163471411.png)
8分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410163633301.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016378616.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016394422.png)
,點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015458339.png)
到平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015551515.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015567344.png)
. 9分
(3)解:過(guò)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016456332.png)
作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016472604.png)
,垂足為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016487318.png)
10分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410165032070.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015941507.png)
12分
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015957414.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015910427.png)
在面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015941507.png)
的射影,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015973550.png)
為直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015489436.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015411500.png)
所成線(xiàn)面角, 13分
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041016082684.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410166431398.png)
,
所以直線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015489436.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015411500.png)
所成角的正切值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041015645471.png)
. 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,在四棱錐
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725521603.png)
中,底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725521526.png)
是正方形,側(cè)面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725552468.png)
底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725521526.png)
.
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725599318.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725615302.png)
分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725646383.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725662374.png)
中點(diǎn),求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725677386.png)
∥平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725693439.png)
;
(Ⅱ)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725724394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725740405.png)
;
(Ⅲ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725771837.png)
,求證:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725786460.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045725802453.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240457258334672.png)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知多面體ABCDFE中, 四邊形ABCD為矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分別為AB、FC的中點(diǎn),且AB = 2,AD =" EF" = 1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240424389977078.png)
(1)求證:AF⊥平面FBC;
(2)求證:OM∥平面DAF;
(3)設(shè)平面CBF將幾何體EFABCD分成的兩個(gè)錐體的體積分別為V
F-ABCD,V
F-CBE,求V
F-ABCD∶V
F-CBE的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,
AD∥
BC,
CE∥
BG,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042134761790.png)
,平面
ABCD⊥平面
BCEG,
BC=
CD=
CE=2
AD=2
BG=2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240421347613434.jpg)
(1)求證:
EC⊥
CD;
(2)求證:
AG∥平面
BDE;
(3)求:幾何體EG-
ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在四棱錐
P-
ABCD中,底面
ABCD是邊長(zhǎng)為1的正方形,且
PA⊥平面
ABCD.
(1)求證:
PC⊥
BD;
(2)過(guò)直線(xiàn)
BD且垂直于直線(xiàn)
PC的平面交
PC于點(diǎn)
E,且三棱錐
E-
BCD的體積取到最大值.
①求此時(shí)四棱錐
E-
ABCD的高;
②求二面角
A-
DE-
B的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033744035475.png)
底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033744066526.png)
,且△PAD為等腰直角三角形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033744082514.png)
,E、F分別為PC、BD的中點(diǎn).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082403374409721033.png)
(1)求證:EF//平面PAD;
(2)求證:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033744128464.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033744144453.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知三條不重合的直線(xiàn)m,n,l 和兩個(gè)不重合的平面α,β ,下列命題正確的是:( )
A.若m//n,n α,則m//α |
B.若α⊥β, α β="m," n⊥m ,則n⊥α. |
C.若l⊥n ,m⊥n,則l//m |
D.若l⊥α,m⊥β, 且l⊥m ,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖將正方形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011402526.png)
沿對(duì)角線(xiàn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011417374.png)
折成直二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011433563.png)
,有如下四個(gè)結(jié)論:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410114492529.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011464401.png)
⊥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011417374.png)
;
②△
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011495481.png)
是等邊三角形;
③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011511396.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011527405.png)
所成的角為60°;
④
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011511396.png)
與平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041011558456.png)
所成的角為60°.
其中錯(cuò)誤的結(jié)論是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知異面直線(xiàn)
a,
b分別在平面
α,
β內(nèi),且
α∩
β=
c,那么直線(xiàn)
c一定( )
A.與a,b都相交 |
B.只能與a,b中的一條相交 |
C.至少與a,b中的一條相交 |
D.與a,b都平行 |
查看答案和解析>>