函數(shù)y=
x2+2
x-1
(x>1)的最小值是( 。
A.2
3
+2
B.2
3
-2
C.2
3
D.2
y=
x2+2
x-1
=(x-1)+
3
x-1
+2
∵x>1,∴x-1>0
∴(x-1)+
3
x-1
≥2
3
(當(dāng)且僅當(dāng)x=
3
+1時(shí),取等號(hào))
∴y=
x2+2
x-1
≥2
3
+2
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為偶函數(shù),曲線過點(diǎn),
(Ⅰ)求曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍;
(Ⅱ)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出命題:若a,b是正常數(shù),且a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
(當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)等號(hào)成立).根據(jù)上面命題,可以得到函數(shù)f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值及取最小值時(shí)的x值分別為( 。
A.11+6
2
2
13
B.11+6
2
,
1
5
C.5,
2
13
D.25,
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
1
8
q
.求產(chǎn)量q等于______,利潤L最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=-x2+2ax與函數(shù)g(x)=
a
x+1
在區(qū)間[1,2]上都是減函數(shù),則實(shí)數(shù)的取值范圍為( 。
A.(0,1)∪(0,1)B.(0,1)∪(0,1]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知g(x)=1-x,f[g(x)]=2-x2,
(1)求f(x)的解析式;
(2)h(x)=
f(x)-1
x2
-a,若h(x)在x∈[-3,-1]上的最大值是-
5
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=
log2x,x>0
2x,x≤0
若f(a)=
1
2
,則a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)<f(1-3x),則x的取值范圍( 。
A.x≤
1
2
B.x<
1
2
C.0≤x<
1
2
D.0<x≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)=
(3a-1)x+4a,x<1
-ax(x≥1)
,在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[
1
8
,
1
3
B.[0,
1
3
]
C.(0,
1
3
D.(-∞,
1
3
]

查看答案和解析>>

同步練習(xí)冊答案