【題目】已知直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)若直線的斜率為,判斷直線與曲線的位置關(guān)系;

(2)求交點(diǎn)的極坐標(biāo)(,).

【答案】(1)見解析;(2)

【解析】

(1)利用加減消元法和平方消元法消去參數(shù)t,可把直線l與曲線C1的參數(shù)方程化為普通方程,結(jié)合直線與圓的位置關(guān)系,可得結(jié)論;

(2)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,求出交點(diǎn)的坐標(biāo),進(jìn)而可化為極坐標(biāo).

(1)斜率為時(shí),直線的普通方程為

.

消去參數(shù),化為普通方程得,②

則曲線是以為圓心,為半徑的圓,

圓心到直線的距離,

故直線與曲線(圓)相交.

(2)的直角坐標(biāo)方程為

,解得

所以的交點(diǎn)的極坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),記隨機(jī)變量表示質(zhì)量在內(nèi)的芒果個(gè)數(shù),求的分布列及數(shù)學(xué)期望.

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來(lái)收購(gòu)芒果,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

A:所以芒果以/千克收購(gòu);

B:對(duì)質(zhì)量低于克的芒果以/個(gè)收購(gòu),高于或等于克的以/個(gè)收購(gòu).

通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以短軸端點(diǎn)和焦點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo).

(Ⅱ)過(guò)橢圓的右焦點(diǎn)作軸的垂線,交橢圓于、兩點(diǎn),過(guò)橢圓上不同于點(diǎn)、的任意一點(diǎn),作直線、分別交軸于、兩點(diǎn).證明:點(diǎn)、的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,、分別為線段、上一點(diǎn),且,.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PAD是正三角形,側(cè)面底面ABCD,MPD的中點(diǎn).

1)求證:平面PCD;

2)求側(cè)面PBC與底面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)對(duì)籃球運(yùn)動(dòng)員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對(duì)籃球運(yùn)動(dòng)員在投籃命中時(shí),運(yùn)動(dòng)員在籃筐中心的水平距離這項(xiàng)指標(biāo),對(duì)某運(yùn)動(dòng)員進(jìn)行了若干場(chǎng)次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分

布直方圖:

(1)依據(jù)頻率分布直方圖估算該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);

(2)若從該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(jī)(單位:米,運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績(jī)中隨機(jī)抽取2次.規(guī)定:這2次成績(jī)均來(lái)自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運(yùn)動(dòng)員得1分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C=2pxp>0)的準(zhǔn)線方程為x=-,F為拋物線的焦點(diǎn)

I)求拋物線C的方程;

II)若P是拋物線C上一點(diǎn),點(diǎn)A的坐標(biāo)為(,2,的最小值;

III)若過(guò)點(diǎn)F且斜率為1的直線與拋物線C交于MN兩點(diǎn),求線段MN的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),為拋物線上三點(diǎn),且點(diǎn)在第一象限,直線經(jīng)過(guò)點(diǎn)與拋物線在點(diǎn)處的切線平行,點(diǎn)的中點(diǎn).

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時(shí)的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(1)求抽取的20人中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù);

(2)從參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時(shí)間在同一時(shí)間段內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案