設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是(
A、(-∞,2-2
2
]∪[2+2
2
,+∞)
B、(-∞,2
2
]∪[2
2
,+∞)
C、[2-2
2
,2+2
2
]
D、(-∞,-2]∪[2,+∞)
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)題意可得圓心(1,1)到直線(m+1)x+(n+1)y-2=0的距離等于半徑,整理得mn=m+n+1,由mn≤(
m+n
2
)2
可求得m+n的范圍.
解答: 解:由直線與圓相切,可得圓心(1,1)到直線(m+1)x+(n+1)y-2=0的距離等于半徑,
|m+1+n+1-2|
(m+1)2+(n+1)2
=1,化簡可得|m+n|=
(m+1)2+(n+1)2

整理得mn=m+n+1,由mn≤(
m+n
2
)2
可知,m+n+1≤
1
4
(m+n)2
,
解得m+n∈(-∞,2-2
2
]∪[2+2
2
,+∞),
故選:A.
點評:本題主要考查直線和圓相切的性質(zhì),點到直線的距離公式以及基本不等式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=(a2+a-2)+(a2-7a+6)i,其中a∈R,當(dāng)a取何值時,
(1)z∈R;  
(2)z是純虛數(shù);   
(3)
.
z
=28+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,2)的直線,將圓形區(qū)域{(x,y)|x2+y2≤9}分為兩部分,使這兩部分的面積之差最大,則該直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[t-4,3t]上的奇函數(shù)f(x)=ax-a-x(其中0<a<1),若m滿足f(m2-4m)≥0,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-6ax+5在區(qū)間(2,+∞)內(nèi)是增函數(shù);則實數(shù)a的取值范圍是( 。
A、a∈(-∞,4]
B、a∈(-∞,2]
C、a∈[2,+∞)
D、a∈[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法流程圖,則輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出結(jié)果S的值為( 。
A、
1
2
B、0
C、-
3
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③已知x∈(0,π),則y=sinx+
2
sinx
的最小值為2
2
;
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三條邊分別為a,b,c試?yán)煤瘮?shù)f(x)=
x
1+x
,x∈(1,+∞)的單調(diào)性證明
a+b
1+a+b
c
1+c

查看答案和解析>>

同步練習(xí)冊答案