1.函數(shù)y=lg(cos2x)的定義域為{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.

分析 由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解出即可得出.

解答 解:由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解得$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z.
∴函數(shù)y=lg(cos2x)的定義域為{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.
故答案為:{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.

點評 本題考查了對數(shù)函數(shù)與三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC的頂點坐標(biāo)分別為點A(-1,2),B(3,1),C(2,-3),判斷△ABC是否為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三點A($\sqrt{3}+1$,1),B(1,1),C(1,2),則<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π),其圖象過點($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間,對稱中心;
(3)將函數(shù)y=f(x)的圖象上各點的橫坐際縮短倒原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B,P三點共線,O為平面內(nèi)任意一點.若涼$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+2$\overrightarrow{OB}$,則實數(shù)λ的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.把一顆骰子投擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),則向量$\overrightarrow{m}$與向量$\overrightarrow{n}$不共線的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{11}{12}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)為一次函數(shù),且單調(diào)遞增,滿足f[f(x)]=$\frac{1}{4}$x-$\frac{3}{4}$,若對于數(shù)列{an}滿足:a1=-1,a2=2,an+1=4f(an)-an-1+4(n≥2).
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}+2}{n}$×($\frac{1}{2}$)n-1,數(shù)列{bn}的前n項的和為Sn求證:Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知θ∈R,且sinθ-2cosθ=$\sqrt{5}$,則tan2θ=( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知點A(1,2)B(2,4)C(-2,5),則$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

同步練習(xí)冊答案