分析 利用條件x+2y+3z=1,構(gòu)造柯西不等式(4x+3y+12z)2≤(x2+y2+z2)(42+32+122),變形即可得答案.
解答 解:根據(jù)題意,實數(shù)x,y,z滿足4x+3y+12z=1,
則有(4x+3y+12z)2≤(x2+y2+z2)(42+32+122),
即1≤169(x2+y2+z2),
即有x2+y2+z2≥$\frac{1}{169}$;
即x2+y2+z2的最小值為$\frac{1}{169}$;
故答案為:$\frac{1}{169}$.
點評 本題考查柯西不等式的應(yīng)用,關(guān)鍵是熟練掌握柯西不等式的形式及變形應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 3 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{17}{24}$ | D. | -$\frac{17}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com