【題目】已經(jīng)集合A={x|(8x﹣1)(x﹣1)≤0};集合C={x|a<x<2a+5}
(1)若 ,求實(shí)數(shù)t的取值集合B;
(2)在(1)的條件下,若(A∪B)C,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由已知集合A={x|(8x﹣1)(x﹣1)≤0}={x| ≤x≤1}

,即| ≤( t≤1,即23≤22t≤20

則﹣3≤﹣2t≤0,

即0≤t≤ ,故集合B=[0, ]


(2)解:在(1)的條件下,A∪B=[0, ]

由(A∪B)C,即[0, ](a,2a+5),

,

解得:﹣ ≤a≤0


【解析】(1)求出集合A的等價條件,結(jié)合指數(shù)不等式的性質(zhì)進(jìn)行求解即可.(2)根據(jù)集合的基本運(yùn)算以及集合關(guān)系建立不等式關(guān)系進(jìn)行求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識,掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)),曲線在與軸的交點(diǎn) 處的切線斜率為.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若,且,試證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列式子中成立的是(
A.log 4<log 6
B.( 0.3>( 0.3
C.( 3.4<( 3.5
D.log32>log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函數(shù)f(x)= +| |2
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈( , )時,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ ),且f(x)=m有且僅有一個實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù),在區(qū)間(﹣∞,0)單調(diào)遞增且f(﹣1)=0.若實(shí)數(shù)a滿足 ,則實(shí)數(shù)a的取值范圍是(
A.[1,2]
B.
C.(0,2]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需要將函數(shù)y=sin3x的圖象( )m.
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在x0∈[﹣1,1]使得不等式| ﹣a +1|≤ 成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足:對任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.則下列結(jié)論正確的是(
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3
D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

同步練習(xí)冊答案