【題目】已知函數(shù)為常數(shù)),曲線在與軸的交點 處的切線斜率為.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若,且,試證明: .
【答案】(1),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)見解析
【解析】試題分析:(1)求出函數(shù)的, ,由曲線在與軸的焦點 處的切線斜率為,解得.通過,即可求解函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增.
(2)設,構造函數(shù),分別根據(jù)函數(shù)的單調(diào)性,以及,且 即可證明.
試題解析:(1)由,得,
因為曲線在與軸的焦點A處的切線斜率為,
所以,所以,
所以,
由,得,
由,得,
所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)證明:設,所以,
,
令
所以,
當且僅當時,等號成立,
所以在上單調(diào)遞增,
又,所以當時, ,
即,所以,
又因為,所以,
由于,所以,
因為,由(1)知函數(shù)在區(qū)間上單調(diào)遞增,
所以,即.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖象關于y軸對稱,并且是[0,+∞)上的減函數(shù),若f(lgx)>f(1),則實數(shù)x的取值范圍是( )
A.
B.
C.
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不過第二象限的直線l:ax﹣y﹣4=0與圓x2+(y﹣1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(3,﹣1)且與直線l平行,直線l2與直線l1關于直線y=1對稱,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點A、B分別為該部分圖象的最高點與最低點,且這兩點間的距離為4 ,則函數(shù)f(x)圖象的一條對稱軸的方程為( )
A.x=
B.x=
C.x=4
D.x=2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x﹣2)=f(x+2),且當x∈[﹣2,0]時,f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內(nèi)關于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是( )
A.(2,3)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形和四邊形均是直角梯形, 二面角是直二面角, .
(1)證明:在平面上,一定存在過點的直線與直線平行;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車公司為了考查某4S店的服務態(tài)度,對到店維修保養(yǎng)的客戶進行回訪調(diào)查,每個用戶在到此店維修或保養(yǎng)后可以對該店進行打分,最高分為10分.上個月公司對該4S店的100位到店維修保養(yǎng)的客戶進行了調(diào)查,將打分的客戶按所打分值分成以下幾組:
第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(I)求所打分值在[6,10]的客戶的人數(shù):
(II)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進行深入調(diào)查,之后將從這6人中隨機抽取2人進行物質(zhì)獎勵,求得到獎勵的人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( )
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已經(jīng)集合A={x|(8x﹣1)(x﹣1)≤0};集合C={x|a<x<2a+5}
(1)若 ,求實數(shù)t的取值集合B;
(2)在(1)的條件下,若(A∪B)C,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com