分析 (1)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是參數(shù)),消去參數(shù)t可得普通方程.曲線C點的極坐標(biāo)方程為ρ=-4sin(θ-$\frac{π}{6}$),即ρ2=-4ρsin(θ-$\frac{π}{6}$),利用互化公式可得直角坐標(biāo)方程.求出圓心到直線l的距離d,與半徑r比較可得直線l與曲線C的位置關(guān)系.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是參數(shù)),代入圓C的方程可得:t2+$\sqrt{3}$t-1=0.可得|PA|•|PB|=|t1t2|.
解答 解:(1)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是參數(shù)),消去參數(shù)t可得普通方程:x-$\sqrt{3}$y-1=0.
曲線C點的極坐標(biāo)方程為ρ=-4sin(θ-$\frac{π}{6}$),即ρ2=-4ρsin(θ-$\frac{π}{6}$),可得直角坐標(biāo)方程:x2+y2+4×$(\frac{\sqrt{3}}{2}y-\frac{1}{2}x)$=0,
配方為(x-1)2+$(y+\sqrt{3})^{2}$=4,可得圓心C(1,-$\sqrt{3}$),半徑r=2.
圓心到直線l的距離d=$\frac{|1+\sqrt{3}×\sqrt{3}-1|}{2}$=$\frac{3}{2}$<2=r.
∴直線l與曲線C的位置關(guān)系是相交.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是參數(shù)),代入圓C的方程可得:t2+$\sqrt{3}$t-1=0.
∴t1t2=-1.
∴|PA|•|PB|=|t1t2|=1.
點評 本題考查了極坐標(biāo)與直角坐標(biāo)互化的公式、圓的標(biāo)準(zhǔn)方程、點到直線的距離公式、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | 1 | C. | 3-$\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (2,+∞) | C. | (0,2) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 0 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=cosx | C. | $y={x^{\frac{1}{2}}}$ | D. | y=-lnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com