7.下列表述正確的是( 。
①歸納推理是由部分到整體的推理;②歸納推理是由一般到一般的推理;
③類比推理是由特殊到一般的推理;④演繹推理是由一般到特殊的推理;
⑤類比推理是由特殊到特殊的推理.
A.①④⑤B.②③④C.②③⑤D.①⑤

分析 根據(jù)題意,結(jié)合歸納推理、類比推理和演繹推理的定義,根據(jù)定義對5個(gè)命題逐一判斷即可得到答案.

解答 解:根據(jù)題意,歸納推理,就是由部分到整體的推理.故①對②錯;
又所謂演繹推理是由一般到特殊的推理.故④對;
類比推理是由特殊到特殊的推理.故⑤對③錯,
則正確的是①④⑤,
故選:A.

點(diǎn)評 本題考查合情推理與演繹推理的定義,關(guān)鍵是掌握合情推理和演繹推理的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m+3}$═1表示雙曲線,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)(2,0)關(guān)于直線y=-x-4的對稱點(diǎn)是( 。
A.(-4,-6)B.(-6,-4)C.(-5,-7)D.(-7,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,AC=4$\sqrt{3},∠ABC={60°}$,D為BC邊上一點(diǎn),BD=AB,設(shè)B,C到直線AD的距離分別為d1和d2,則d1+d2的最大值為( 。
A.2B.4C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2lnx+8x,則$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$的值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某廠生產(chǎn)的某種零件的尺寸Z大致服從正態(tài)分布N(100,52),且規(guī)定尺寸Z∉(μ-3σ,μ+3σ)為次品,其余的為正品,生產(chǎn)線上的打包機(jī)自動把每4件零件打包成1箱,然后進(jìn)入銷售環(huán)節(jié),若每銷售一件正品可獲利50元,每銷售一件次品虧損100元,現(xiàn)從A生產(chǎn)線生產(chǎn)的零件中抽樣25箱做質(zhì)量分析,作出的頻率分布直方圖如下:
(1)估計(jì)A生產(chǎn)線生產(chǎn)的零件的次品率及零件的平均尺寸;
(2)從A生產(chǎn)線上隨機(jī)取一箱零件,求這箱零件銷售后的期望利潤及不虧損的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.觀察下列不等式:
1<$\frac{4}{3}$;
1+$\frac{1}{{2}^{2}}$<$\frac{8}{5}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{12}{7}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{16}{9}$;

(1)由上述不等式,歸納出與正整數(shù)n有關(guān)的一個(gè)一般性結(jié)論:
(2)用數(shù)學(xué)歸納法證明你得到的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin(ωx+φ)(ω>0,0<φ<π),直線x=$\frac{π}{4}$和x=$\frac{5π}{4}$是f(x)相鄰的兩條對稱軸,則f(x)的解析式為( 。
A.f(x)=3sin(x+$\frac{π}{4}$)B.f(x)=3sin(2x$+\frac{π}{4}$)C.f(x)=3sin(x$+\frac{3π}{4}$)D.f(x)=3sin(2x$+\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果a2>b2,那么( 。
A.a>b>0B.a<b<0C.a+b<0或a+b>0D.|a|>|b|

查看答案和解析>>

同步練習(xí)冊答案