。
(Ⅰ)求的極值點(diǎn);
(Ⅱ)當(dāng)時(shí),若方程在上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)時(shí),。
(Ⅰ)①時(shí),, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無極大值點(diǎn),也無極小值點(diǎn);②當(dāng)時(shí),在上遞增,在單調(diào)遞減,函數(shù)的極大值點(diǎn)為-1,無極小值點(diǎn);③當(dāng)時(shí),在上遞減,在單調(diào)遞增,函數(shù)的極小值點(diǎn)為-1,無極大值點(diǎn);(Ⅱ)當(dāng)時(shí),方程有兩解;(Ⅲ)詳見解析.
【解析】
試題分析:(Ⅰ)求的極值點(diǎn),先求函數(shù)的定義域?yàn)?/span>,然后可對(duì)函數(shù)求導(dǎo)數(shù)得,令導(dǎo)數(shù)等零,求出的解,再利用導(dǎo)數(shù)大于0,導(dǎo)數(shù)小于0,判斷函數(shù)的單調(diào)區(qū)間,從而確定極值點(diǎn),但本題由于含有參數(shù),需對(duì)討論(Ⅱ)當(dāng)時(shí),若方程在上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍,由(Ⅰ)知,在上單調(diào)遞增,在上單調(diào)遞減,而,由此可得實(shí)數(shù)t的取值范圍;(Ⅲ)根據(jù)要證明當(dāng)時(shí),,直接證明比較困難,可以利用分析法來證明本題,從結(jié)論入手,要證結(jié)論只要證明后面這個(gè)式子成立,兩邊取對(duì)數(shù),構(gòu)造函數(shù),問題轉(zhuǎn)化為只要證明函數(shù)在一個(gè)范圍上成立,利用導(dǎo)數(shù)證明函數(shù)的性質(zhì).
試題解析:(Ⅰ)(1分)
①時(shí),, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無極大值點(diǎn),也無極小值點(diǎn)。(2分)
②當(dāng)時(shí),在上遞增,在單調(diào)遞減,函數(shù)的極大值點(diǎn)為-1,無極小值點(diǎn)(3分)
③當(dāng)時(shí),在上遞減,在單調(diào)遞增,函數(shù)的極小值點(diǎn)為-1,無極大值點(diǎn)(4分)
(Ⅱ)由(Ⅰ)知,在上單調(diào)遞增,在上單調(diào)遞減,
又,
∴,∴當(dāng)時(shí),方程有兩解 (8分)
(Ⅲ)要證:只須證
只須證:,
設(shè)
則,(10分)
由(1)知在單調(diào)遞減,(12分)
∴,即是減函數(shù),而m>n,
∴,故原不等式成立。 (14分)
考點(diǎn):不等式的證明;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012屆廣東省潮汕兩市名校高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
.(本題滿分14分)
設(shè),其中
(Ⅰ)當(dāng)時(shí),求的極值點(diǎn);
(Ⅱ)若為R上的單調(diào)函數(shù),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省石家莊市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè),其中為正實(shí)數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州四校高三第二次聯(lián)考考試?yán)砜茢?shù)學(xué) 題型:解答題
.(本小題滿分13分)設(shè),其中為正實(shí)數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省晉江市四校高三第二次聯(lián)合考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
設(shè),其中為正實(shí)數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市高三下學(xué)期入學(xué)測(cè)試數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)設(shè),其中為正實(shí)數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com