已知數列{an}是等差數列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n項和為Sn,則使得Sn達到最大的n是( )
A.18 B.19 C.20 D.21
C
【解析】
試題分析:設{an}的公差為d,由題意得
a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①
a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②聯立得a1=39,d=-2,
∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400,
故當n=20時,Sn達到最大值400.故選C.
考點:本題主要考查等差數列的通項公式及前n項和公式。
點評:求等差數列前n項和的最值問題可以轉化為利用二次函數的性質求最值問題,但注意n取正整數這一條件.也可通過確定通項公式,進一步確定正負項分界。
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
51006 |
2 |
51006 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com