精英家教網 > 高中數學 > 題目詳情

已知數列{an}是等差數列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n項和為Sn,則使得Sn達到最大的n是(   )

A.18               B.19               C.20               D.21

 

【答案】

【解析】

試題分析:設{an}的公差為d,由題意得

a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①

a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②

由①②聯立得a1=39,d=-2,

∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400,

故當n=20時,Sn達到最大值400.故選C.

考點:本題主要考查等差數列的通項公式及前n項和公式。

點評:求等差數列前n項和的最值問題可以轉化為利用二次函數的性質求最值問題,但注意n取正整數這一條件.也可通過確定通項公式,進一步確定正負項分界。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義一個“等積數列”:在一個數列中,如果每一項與它后一項的積都是同一常數,那么這個數列叫“等積數列”,這個常數叫做這個數列的公積.已知數列{an}是等積數列,且a1=2,公積為5,則這個數列的前n項和Sn的計算公式為:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在一個數列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數),那么這個數列叫做等積數列,k叫做這個數列的公積.已知數列{an}是等積數列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數學 來源: 題型:

定義“等積數列”:在一個數列中,如果每一個項與它的后一項的積都為同一個常數,那末這個數列叫做等積數列,這個常數叫做該數列的公積.已知數列{an}是等積數列,且a1=2,公積為5,Tn為數列{an}前n項的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數學 來源: 題型:

我們對數列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數),那么這個數列叫做等積數列,k叫做這個數列的公積.已知數列{an}是等積數列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列的定義為:在一個數列中,從第二項起,如果每一項與它的前一項的差都為同一個常數,那么這個數列叫做等差數列,這個常數叫做該數列的公差.
(1)類比等差數列的定義給出“等和數列”的定義;
(2)已知數列{an}是等和數列,且a1=2,公和為5,求 a18的值,并猜出這個數列的通項公式(不要求證明).

查看答案和解析>>

同步練習冊答案