已知等差數(shù)列{an}中,a2=4,a6=12,則公差d等于( 。
A、
1
2
B、
3
2
C、2
D、3
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題設(shè)知,a6=a2+4d,由此能求出公差d的值.
解答: 解:∵等差數(shù)列{an}中,a2=4,a6=12,
∴a6=a2+4d,即12=4+4d,
解得d=2.
故選:C.
點評:本題考查等差數(shù)列的性質(zhì)和應(yīng)用,解題時要注意等差數(shù)列通項公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下面的程序框圖,輸出的結(jié)果為( 。
A、1B、2C、4D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于非零向量
a
、
b
,下列命題中正確的是( 。
A、
a
b
a
b
上的投影為|
a
|
B、
a
b
=0⇒
a
=0或
b
=0
C、
a
b
a
b
=(
a
b
2
D、
a
c
=
b
c
a
=
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1,點E,F(xiàn),G分別是線段B1B,AB和A1C上的動點,觀察直線CE與D1F,CE與D1G.給出下列結(jié)論:
①對于任意給定的點E,存在點F,使得D1F⊥CE;
②對于任意給定的點F,存在點E,使得CE⊥D1F;
③對于任意給定的點E,存在點G,使得D1G⊥CE;
④對于任意給定的點G,存在點E,使得CE⊥D1G.
其中正確結(jié)論的序號是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
1
2x+
2
,類比課本推導等差數(shù)列前n項和公式的推導方法計算f(-4)+f(-3)+…+f(0)+f(1)+…+f(4)+f(5)的值為( 。
A、
3
2
2
B、
5
2
2
C、
9
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)是( 。
(1)若直線l上有無數(shù)個點不在α內(nèi),則l∥α
(2)若直線l與平面α平行,l與平面α內(nèi)的任意一直線平行
(3)兩條平行線中的一條直線與平面平行,那么另一條也與這個平面平行
(4)若一直線a和平面α內(nèi)一直線b平行,則a∥α
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足a1=1,an+2an=39(n∈N*),那么數(shù)列{an}的前50項和S50的最小值為( 。
A、637
B、559
C、481+25
39
D、492+24
78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a3+a7=15,則a2+a8=(  )
A、10B、15C、12D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知離心率為
1
2
的橢圓C1的左、右焦點分別為F1,F(xiàn)2,拋物線C2:y2=4x的焦點為F2,
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)若過焦點F2的直線l與拋物線C2交于A,B兩點,問在橢圓C1上且在直線l外是否存在一點M,使直線MA,MF2,MB的斜率依次成等差數(shù)列,若存在,請求出點M的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案