【題目】已知命題p:對(duì)于m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立;命題q:不等式x2+ax+2<0有解,若p∨q為真,且p∧q為假,求a的取值范圍.

【答案】解:若命題p:對(duì)于m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立; 由于 =3,∴a2﹣5a﹣3≥3,解得a≥6或a≤﹣1.
若命題q:不等式x2+ax+2<0有解,則△=a2﹣8>0,解得 或a<﹣2
若p∨q為真,且p∧q為假,則p與q一真一假.
當(dāng)p真q假時(shí), ,解得 ,此時(shí)a∈
當(dāng)q真p假時(shí), ,解得 ,此時(shí)a∈
綜上可知:a的取值范圍是
【解析】分別求出命題p,q中的a的取值范圍,再利用若p∨q為真,且p∧q為假,則p與q一真一假.即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}和 都是等差數(shù)列,且公差相等.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,cn=bnbn+1 , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn).求證:

(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個(gè)人去參加娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)樹形圖依據(jù)下列規(guī)律不斷生長(zhǎng):1個(gè)空心圓點(diǎn)到下一行僅生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn),1個(gè)實(shí)心圓點(diǎn)到下一行生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn)和1個(gè)空心圓點(diǎn).則第11行的實(shí)心圓點(diǎn)的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)都是正數(shù),2a5 , a4 , 4a6成等差數(shù)列,且滿足 ,數(shù)列{bn}的前n項(xiàng)和為 ,n∈N* , 且b1=1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)設(shè) ,n∈N* , {Cn}前n項(xiàng)和為 ,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案