【題目】等比數(shù)列{an}的各項都是正數(shù),2a5 , a4 , 4a6成等差數(shù)列,且滿足 ,數(shù)列{bn}的前n項和為 ,n∈N* , 且b1=1
(1)求數(shù)列{an},{bn}的通項公式
(2)設 ,n∈N* , {Cn}前n項和為 ,求證: .
【答案】
(1)解:設等比數(shù)列{an}的公比為q,由題意可知2a4=2a5+4a6,即a4=a4q+2a4q2,
由an>0,則2q2+q﹣1=0,解得:q= ,或q=﹣1(舍去),
a4=4a32=4a2a4,則a2= ,
∴a1= ,
等比數(shù)列{an}通項公式an=( )n,
當n≥2時,bn=Sn﹣Sn﹣1= ﹣ ,
整理得: = ,
∴數(shù)列{ }是首項為 =1的常數(shù)列,
則 =1,則bn=n,n∈N*,
數(shù)列{bn}的通項公式bn=n,n∈N*
(2)解:證明:由(1)可知:cn= an
= = ﹣ ,
∴ ck=c1+c2+…+cn=( ﹣ )+( ﹣ )+…+ ﹣
= ﹣ < .
【解析】(1)由于數(shù)列{an}為等比數(shù)列,根據(jù)等比數(shù)列的通項公式表示出a4,a5,a6,根據(jù)2a5,a4,4a6成等差數(shù)列,可得2a4=2a5+4a6,可解得公比q,從而得到等比數(shù)列的通項公式,由bn=Sn﹣Sn﹣1,化簡整理可得數(shù)列{bn}的通項公式,(2)由(1)求得數(shù)列{Cn}的通項公式,采用裂項相消即可求得數(shù)列{Cn}前n項和,即可證明不等式成立.
【考點精析】通過靈活運用數(shù)列的前n項和和數(shù)列的通項公式,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:對于m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立;命題q:不等式x2+ax+2<0有解,若p∨q為真,且p∧q為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A、B、C為銳角△ABC的三個內(nèi)角,M=sinA+sinB+sinC,N=cosA+2cosB,則( )
A.M<N
B.M=N
C.M>N
D.M、N大小不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ< )的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)描述函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到;
(Ⅲ)若f( )= ( <α< ),求tan2(α﹣ ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù) .
(1)若f(x)是奇函數(shù),求m的值;
(2)當m=1時,求函數(shù)f(x)在(﹣∞,0)上的值域,并判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),請說明理由;
(3)若函數(shù)f(x)在[0,1]上是以3為上界的函數(shù),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ln(2x﹣m)的定義域為集合A,函數(shù)g(x)= ﹣ 的定義域為集合B.
(Ⅰ)若BA,求實數(shù)m的取值范圍;
(Ⅱ)若A∩B=,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com