已知0≤x≤2,則函數(shù)y=4x-3×2x-4的最小值
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,設(shè)t=2x,將函數(shù)轉(zhuǎn)化為關(guān)于t的二次函數(shù),利用配方法求出函數(shù)的最小值即可.
解答: 解:令2x=t,則t∈[1,4]
∴y=t2-3t-4=(t-
3
2
2-
25
4
,t∈[1,4]
∴t=
3
2
時(shí),y取最小值-
25
4

故答案為:-
25
4
點(diǎn)評(píng):本題考查了指數(shù)型函數(shù)求值域的方法,換元法求函數(shù)值域,配方法求二次函數(shù)的值域
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求和:1+
3
22
+
4
23
+…+
n+1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓O1:x2+y2+6x-7=0與圓O2:x2+y2+6y-27=0的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩燈塔A,B與海洋觀察站C的距離都等于20km,燈塔A在C北偏東30°,B在C南偏東60°,則A,B之間相距( 。﹌m.
A、20
B、30
C、40
D、20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N+),且an=2n+λ,若數(shù)列{Sn}在n≥7時(shí)為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為(  )
A、(-15,+∞)
B、[-15,+∞)
C、[-16,+∞)
D、(-16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=r2(r>0)上僅有3個(gè)點(diǎn)到直線x-y-2=0的距離為1,則實(shí)數(shù)r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-1,0),B(1,0),動(dòng)點(diǎn)P(x,y)滿足:|PA|+|PB|=4,則點(diǎn)P的軌跡的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=16 a22=a1a5 
(1)求若數(shù)列{an}通項(xiàng)公式;
(2)若數(shù)列滿足bn=an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由某種設(shè)備的使用年限xi(年)與所支出的維修費(fèi)yi(萬(wàn)元)的數(shù)據(jù)資料算得如下結(jié)果,
5
i=1
x
2
i
=90,
5
i=1
xiyi
=112,
5
i=1
xi
=20,
5
i=1
yi
=25.
(1)求所支出的維修費(fèi)y對(duì)使用年限x的線性回歸方程
y
=
b
x+
a
;
(2)①判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
②當(dāng)使用年限為8年時(shí),試估計(jì)支出的維修費(fèi)是多少.
(附:在線性回歸方程
y
=
b
x+
a
中,)
b
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x
,其中
.
x
.
y
為樣本平均值.)

查看答案和解析>>

同步練習(xí)冊(cè)答案