【題目】為了研究“晚上喝綠茶與失眠”有無關(guān)系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結(jié)論是( )

A. 在犯錯誤的概率不超過0.01的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

B. 在犯錯誤的概率不超過0.01的前提下認(rèn)為“晚上喝綠茶與失眠無關(guān)”

C. 在犯錯誤的概率不超過0.05的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

D. 在犯錯誤的概率不超過0.05的前提下認(rèn)為“晚上喝綠茶與失眠無關(guān)”

【答案】C

【解析】分析:根據(jù)題意給定的的值,與臨界值表的數(shù)據(jù)比較,即可得到答案.

詳解:由題意,知,

根據(jù)臨界值表:可得,

所以可得在犯錯誤的概率不超過的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校期中考試數(shù)學(xué)試卷中,抽取樣本,考察成績分布,將樣本分成5組,繪成頻率分布直方圖,圖中各小組的長方形面積之比從左至右依次為1:3:6:4:2,第一組的頻數(shù)是4.

1)求樣本容量及各組對應(yīng)的頻率;

2)根據(jù)頻率分布直方圖估計成績的平均分和中位數(shù)(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項為1,且,數(shù)列滿足,,對任意,都有.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為.若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四個不相等的實數(shù)根,則實數(shù)m的取值范圍是(
A.(﹣∞,﹣
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進行統(tǒng)計,y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計表如下:

x

1

2

3

4

5

y

50

60

70

80

100

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

1)若從這5天隨機抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計該活動持續(xù)7天,共有多少名顧客參加抽獎?

參考公式及數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖后,記“輸出是好點”為事件A.

(1)若為區(qū)間內(nèi)的整數(shù)值隨機數(shù),為區(qū)間內(nèi)的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;

(2)若為區(qū)間內(nèi)的均勻隨機數(shù),為區(qū)間內(nèi)的均勻隨機數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點,并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最大值;

(2)若對于任意,均有,求正實數(shù)的取值范圍;

(3)是否存在實數(shù),使得不等式對于任意恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案