【題目】為提高黔東南州的整體旅游服務(wù)質(zhì)量,州旅游局舉辦了黔東南州旅游知識(shí)競(jìng)賽,參賽單位為本州內(nèi)各旅游協(xié)會(huì),參賽選手為持證導(dǎo)游.現(xiàn)有來自甲旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游2名;乙旅游協(xié)會(huì)的導(dǎo)游5名,其中高級(jí)導(dǎo)游3名.從這8名導(dǎo)游中隨機(jī)選擇4人 參加比賽.

(Ⅰ)設(shè)為事件“選出的4人中恰有2名高級(jí)導(dǎo)游,且這2名高級(jí)導(dǎo)游來自同一個(gè)旅游協(xié)會(huì)”,求事件發(fā)生的概率.

(Ⅱ)設(shè)為選出的4人中高級(jí)導(dǎo)游的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1);(2)見解析.

【解析】試題分析:(Ⅰ)由已知條件知,當(dāng)兩名高級(jí)導(dǎo)游來自甲旅游協(xié)會(huì)時(shí),有種不同選法,當(dāng)兩名高級(jí)導(dǎo)游來自乙旅游協(xié)會(huì)時(shí),有種不同選法,利用古典概型及其概率的計(jì)算公式,即可求解事件發(fā)生的概率;

(Ⅱ)由題意,得隨機(jī)變量的所有可能取值為,求得隨便取每個(gè)值的概率,列出分布列,利用公式求解隨機(jī)變量的期望.

試題解析:

(Ⅰ)由已知條件知,當(dāng)兩名高級(jí)導(dǎo)游來自甲旅游協(xié)會(huì)時(shí),有種不同選法;

當(dāng)兩名高級(jí)導(dǎo)游來自乙旅游協(xié)會(huì)時(shí),有種不同選法,則

,所以事件發(fā)生的概率為 .

(Ⅱ)隨機(jī)變量的所有可能取值為1,2,3,4.

,

,

所以,隨機(jī)變量的分布列為

1

2

3

4

則隨機(jī)變量的數(shù)學(xué)期望(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:

(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為

“桔柚直徑與所在基地有關(guān)”?

(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表):

(3)經(jīng)計(jì)算,甲基地的500個(gè)桔柚直徑的樣本方差,乙基地的500個(gè)桔柚直徑的樣本方差,,并且可認(rèn)為優(yōu)質(zhì)品率較高的基地采摘的桔柚直徑服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.由優(yōu)質(zhì)品率較高的種植基地的抽樣數(shù)據(jù),估計(jì)該基地采摘的桔柚中,直徑不低于86.78亳米的桔柚在總體中所占的比例.

附:.

,則.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影為,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.

(1)求的方程;

(2)設(shè)軸正半軸的交點(diǎn)為,過點(diǎn)的直線的斜率為,交于另一點(diǎn)為.若以點(diǎn)為圓心,以線段長(zhǎng)為半徑的圓與有4個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講設(shè)函數(shù)

(1)當(dāng)時(shí),解不等式:;

(2)若關(guān)于x的不等式fx)≤4的解集為[﹣1,7],且兩正數(shù)st滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講設(shè)函數(shù)

(1)當(dāng)時(shí),解不等式:;

(2)若關(guān)于x的不等式fx)≤4的解集為[﹣1,7],且兩正數(shù)st滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高黔東南州的整體旅游服務(wù)質(zhì)量,州旅游局舉辦了黔東南州旅游知識(shí)競(jìng)賽,參賽單位為本州內(nèi)各旅游協(xié)會(huì),參賽選手為持證導(dǎo)游.現(xiàn)有來自甲旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游2名;乙旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游1名.從這6名導(dǎo)游中隨機(jī)選擇2人 參加比賽.

(Ⅰ)求選出的2人都是高級(jí)導(dǎo)游的概率;

(Ⅱ)為了進(jìn)一步了解各旅游協(xié)會(huì)每年對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)情況,經(jīng)多次統(tǒng)計(jì)得到,甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬元),乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬元),求甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)不低于乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,若橢圓,則稱橢圓與橢圓 “相似”.

(1)求經(jīng)過點(diǎn),且與橢圓 “相似”的橢圓的方程;

(2)若,橢圓的離心率為,在橢圓上,過的直線交橢圓,兩點(diǎn),且.

①若的坐標(biāo)為,且,求直線的方程;

②若直線,的斜率之積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,圓.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求,的極坐標(biāo)方程;

(2)設(shè)曲線為參數(shù)且),與圓,分別交于,,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案