分析 (1)兩邊平方,使用分析法逐步找出使不等式成立的條件;
(2)使用基本不等式得出結論.
解答 證明:(1)欲證$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$,
只需證($\sqrt{7}$+$\sqrt{13}$)2<(3+$\sqrt{11}$)2,即20+2$\sqrt{91}$<20+6$\sqrt{11}$.
只需證$\sqrt{91}$<3$\sqrt{11}$,即證$\sqrt{91}$$<\sqrt{99}$.
只需證91<99.
顯然91<99恒成立,
∴$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$.
(2)∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.
同理可得:b(c2+a2)≥2abc,c(a2+b2)≥2abc,
∴a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.
點評 本題考查了不等式的證明方法,根據(jù)式子特點合理選擇證明方法,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-i | B. | 1+2i | C. | 1-2i | D. | 1+i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com