5.選擇適當?shù)姆椒ㄗC明
(1)$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$;
(2)已知a,b,c>0,求證:a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

分析 (1)兩邊平方,使用分析法逐步找出使不等式成立的條件;
(2)使用基本不等式得出結論.

解答 證明:(1)欲證$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$,
只需證($\sqrt{7}$+$\sqrt{13}$)2<(3+$\sqrt{11}$)2,即20+2$\sqrt{91}$<20+6$\sqrt{11}$.
只需證$\sqrt{91}$<3$\sqrt{11}$,即證$\sqrt{91}$$<\sqrt{99}$.
只需證91<99.
顯然91<99恒成立,
∴$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$.
(2)∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.
同理可得:b(c2+a2)≥2abc,c(a2+b2)≥2abc,
∴a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

點評 本題考查了不等式的證明方法,根據(jù)式子特點合理選擇證明方法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.點P(1,a)到直線x-2y+2=0的距離為$\frac{3\sqrt{5}}{5}$,且P在3x+y-3>0表示的區(qū)域內(nèi),則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在三棱錐P-ABC中,PA⊥底面ABC,AB=1,AC=2,∠BAC=60°,體積為$\frac{{\sqrt{3}}}{3}$,則三棱錐的外接球的體積等于$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若x>0,則x+$\frac{9}{x}$+2有( 。
A.最小值6B.最小值8C.最大值4D.最大值3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.一個四面體,其中一個頂點A的三個角分別為60°,θ,90°,其中tanθ=2,則θ角與60°角所在面的二面角的余弦值為$-\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)化簡$\frac{sin(3π-α)•cos(α-π)•cos(4π+α)}{{sin(α-3π)•cos(\frac{π}{2}-α)•sin(\frac{π}{2}-α)}}$
(2)化簡求值sin(-$\frac{π}{3}$)+2sin$\frac{4π}{3}$+3sin$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.圓心在拋物線x2=2y上且與直線2x+2y-3=0相切的圓中,面積最小的圓的方程為$(x+1)^{2}+(y-\frac{1}{2})^{2}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)z=$\frac{2}{1-i}$-2i,則z的共軛復數(shù)是( 。
A.1-iB.1+2iC.1-2iD.1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.根據(jù)如圖框圖,當輸入x為6時,輸出的y=10.

查看答案和解析>>

同步練習冊答案