A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 直接求出函數(shù)f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)的圖象關(guān)于x=π對稱的圖象的函數(shù)解析式判斷①;利用導數(shù)研究函數(shù)的單調(diào)性判斷②;畫圖說明③正確.
解答 解:①由f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$),設(shè)其圖象關(guān)于x=π對稱的圖象的函數(shù)解析式為y=g(x),
設(shè)g(x)上一點(x,y),它關(guān)于x=π的對稱點是(2π-x,y),這個對稱點必然在f(x)上,
∴y=sin($\frac{2π-x}{2}+\frac{π}{6}$)=sin($\frac{x}{2}-\frac{π}{6}$),故①正確;
②函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{x}$=$(x-1)^{\frac{1}{2}}+\frac{1}{x}$的定義域為[1,+∞),
且f′(x)=$\frac{1}{2}(x-1)^{-\frac{1}{2}}-\frac{1}{{x}^{2}}$=$\frac{1}{2\sqrt{x-1}}-\frac{1}{{x}^{2}}$,
∵(x-2)2≥0,∴x2≥4x-4,即x≥$2\sqrt{x-1}$,
又當x≥1時,x2≥x,∴${x}^{2}≥2\sqrt{x-1}$,∴f′(x)=$\frac{1}{2}(x-1)^{-\frac{1}{2}}-\frac{1}{{x}^{2}}$=$\frac{1}{2\sqrt{x-1}}-\frac{1}{{x}^{2}}$≥0,
函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{x}$在定義域上是增函數(shù),故②正確;
③畫出函數(shù)函數(shù)g(x)=|log2 x|-($\frac{1}{2}$)x在(0,+∞)的圖象:
上恰有兩個零點x1,x2.
不妨設(shè)x1<x2.
則0<x1<1<x2.
-log2x1=$(\frac{1}{2})^{{x}_{1}}$,log2x2=$(\frac{1}{2})^{{x}_{2}}$.
∴l(xiāng)og2(x1x2)=$(\frac{1}{2})^{{x}_{2}}-(\frac{1}{2})^{{x}_{1}}$<0,
∴x1•x2<1,故③正確.
∴正確的命題的個數(shù)是3.
故選:D.
點評 本題考查命題的真假判斷與應用,考查函數(shù)的圖象和性質(zhì),訓練了利用導數(shù)研究函數(shù)的單調(diào)性,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分而不必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 21009 | D. | -21009 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 一個圓柱的側(cè)面展開圖是一個長、寬分別為6和4的長方形,則這個圓柱的體積一定是等于$\frac{36}{π}$ | |
B. | 命題“?x0∈R,x02+x0-1<0”的否定是“?x∈R,x2+x-1>0” | |
C. | 若ω≠0時,“φ=kπ+$\frac{π}{2}$(k∈Z”是“函數(shù)f(x)=sin(ωx+φ)是偶函數(shù)”的充要條件 | |
D. | 已知⊙O:x2+y2=r2,定點P(x0,y0),直線l:x0x+y0y=r2,若點P在⊙O內(nèi),則直線l與⊙O相交 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com