設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,且在區(qū)間內(nèi)存在極值,求整數(shù)的值.

 

【答案】

(Ⅰ)遞增區(qū)間,遞減區(qū)間;(Ⅱ).

【解析】

試題分析:(Ⅰ)求函數(shù)的導(dǎo)函數(shù),由得函數(shù)遞增區(qū)間,由得函數(shù)遞減區(qū)間;

(Ⅱ)利用函數(shù)二次求導(dǎo)判得存在一個極值點,則即可求解值.

試題解析:(Ⅰ)由已知.          (1分)

當(dāng)時,函數(shù)內(nèi)單調(diào)遞增;   (2分)

當(dāng)時,由;     (3分)

.        (4分)

內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減.    (5分)

(Ⅱ)當(dāng)時,

               (6分)

,

內(nèi)單調(diào)遞減.        (8分)

          (9分)

在(3,4)內(nèi)有零點,即在(3,4)內(nèi)存在極值.          (11分)

又∵上存在極值,且,∴k=3.     (12分)

考點:1.利用導(dǎo)數(shù)判函數(shù)的單調(diào)性;2.求函數(shù)的極值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三上學(xué)期第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ)若當(dāng)時,恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省仙桃市高三上學(xué)期第三次考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù) 

(1)若,

①求的值;

的最小值。

(參考數(shù)據(jù)

(2) 當(dāng)上是單調(diào)函數(shù),求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

  設(shè)函數(shù)

(Ⅰ)當(dāng)時,求的最大值;

(Ⅱ)令,(),其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建師大附中高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題12分)設(shè)函數(shù),

(I)求的最小正周期以及單調(diào)增區(qū)間;

(II)當(dāng)時,求的值域;

(Ⅲ)若,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(14分)設(shè)函數(shù)。

(1)求的單調(diào)區(qū)間;

(2)若,不等式恒成立,求實數(shù)m的取值范圍;

(3)若方程在區(qū)間[0, 2] 恰有兩個不等實根,求a的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案