19.cos(-$\frac{26π}{3}$)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用誘導(dǎo)公式及特殊角的三角函數(shù)值即可計(jì)算求值.

解答 解:cos(-$\frac{26π}{3}$)=cos($\frac{26π}{3}$)=cos(8π+$\frac{2π}{3}$)=cos(π-$\frac{π}{3}$)=-cos$\frac{π}{3}$=-$\frac{1}{2}$.
故選:A.

點(diǎn)評 本題主要考查了誘導(dǎo)公式及特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{2}$),$\overrightarrow$=(cosα,-1),且$\overrightarrow{a}$∥$\overrightarrow$
(1)若α為第二象限角,求$\frac{sin(-α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$的值;
(2)求cos2α-sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,則|2$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項(xiàng)和為${S_n}={4^n}+b$(b是常數(shù),n∈N*),若這個(gè)數(shù)列是等比數(shù)列,則b等于(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),求f(-2008)+f(2009)的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+1|-2|x|.
(1)求不等式f(x)≤-6的解集;
(2)若存在實(shí)數(shù)x滿足f(x)=log2a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.A、B是單位圓O上的動點(diǎn),且A、B分別在第--象限,C是圓0與π軸正半軸的交點(diǎn),△A0B為等腰直角三角形,記∠AOC=α.
(1)若A點(diǎn)的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$),求$\frac{2sinα•sinα}{co{s}^{2}α+1-2si{n}^{2}α}$的值;
(2)求|BC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C過點(diǎn)A(1,-3),且與圓M:(x+1)2+y2=r2(r>0)關(guān)于直線x-y-2=0對稱.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)B為圓C上一動點(diǎn),求$\overrightarrow{AB}$•$\overrightarrow{MB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對x∈R.定義sgnx=$\left\{\begin{array}{l}{\frac{|x|}{x},x≠0}\\{0,x=0}\end{array}\right.$,設(shè)M={(x,y)|xsgn(x-1)ysgn(y-1)=10,x,y∈R},對M中任意一點(diǎn)(x,y)在映射f的作用下的像為(lgx,lgy),則M中所有點(diǎn)在f作用下的像圍成的區(qū)域的面積為2.

查看答案和解析>>

同步練習(xí)冊答案