【題目】我校對(duì)高二600名學(xué)生進(jìn)行了一次知識(shí)測(cè)試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
8 | 0.16 | |
10 | ________ | |
________ | ________ | |
14 | 0.28 | |
合計(jì) | ________ | 1.00 |
(2)請(qǐng)你估算該年級(jí)學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在和的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在的概率.
【答案】(1)見解析;(2)83.125;(3).
【解析】
(1)先填寫完整頻率分布表,由此補(bǔ)全頻率分布直方圖;
(2)設(shè)中位數(shù)為,利用頻率分布直方圖列出方程,求出中位數(shù);
(3)由題意可知樣本分?jǐn)?shù)在有8人,樣本分?jǐn)?shù)在有16人,用分層抽樣的方法從樣本分?jǐn)?shù)在和的人中共抽取6人,則抽取的分?jǐn)?shù)在和的人數(shù)分別為2人和4人,記分?jǐn)?shù)在為,在的為,由此利用列舉法能求出2人分?jǐn)?shù)在的概率.
解:(1)填寫頻率分布表中的空格,如下表:
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
8 | 0.16 | |
10 | 0.2 | |
16 | 0.32 | |
14 | 0.28 | |
合計(jì) | 50 | 1.00 |
補(bǔ)全頻率分布直方圖,如下圖:
(2)設(shè)中位數(shù)為x,依題意得,
解得,所以中位數(shù)約為83.125.
(3)由題意知樣本分?jǐn)?shù)在有8人,樣本分?jǐn)?shù)在有16人,
用分層抽樣的方法從樣本分?jǐn)?shù)在和的人中共抽取6人,
則抽取的分?jǐn)?shù)在和的人數(shù)分別為2人和4人.
記分?jǐn)?shù)在的為,在的為.
從已抽取的6人中任選兩人的所有可能結(jié)果有15種,分別為
,
,
設(shè)“2人分?jǐn)?shù)都在”為事件A,
則事件A包括共6種,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時(shí),().
(1)當(dāng)時(shí),求的表達(dá)式:
(2)求在區(qū)間的最大值的表達(dá)式;
(3)當(dāng)時(shí),若關(guān)于x的方程(a,)恰有10個(gè)不同實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若方程在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時(shí),若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時(shí),設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有15個(gè)省三好學(xué)生名額分給1、2、3、4共四個(gè)班級(jí),其中1班至少2個(gè)名額,2班、4班每班至少3個(gè)名額,3班最多2個(gè)名額,則共有_________種不同分配方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交大設(shè)計(jì)學(xué)院植物園準(zhǔn)備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區(qū)、植物精油提煉處與植物精油體驗(yàn)點(diǎn).田地內(nèi)擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點(diǎn),點(diǎn)P在CN上.規(guī)劃在小路MN和AP的交點(diǎn)O(O與M、N不重合)處設(shè)立植物精油體驗(yàn)點(diǎn),圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區(qū),A、N為出入口(小路寬度不計(jì)).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費(fèi)用忽略不計(jì),為車輛安全出入,小路AO段的建造費(fèi)用為每百米4萬元,小路ON段的建造費(fèi)用為每百米3萬元.
(1)若擬建的小路AO段長為百米,求小路ON段的建造費(fèi)用;
(2)設(shè)∠BAP=,求的值,使得小路AO段與ON段的建造總費(fèi)用最小,并求岀最小建造總費(fèi)用(精確到元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;
(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com