【題目】已知函數(shù)fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的極值點(diǎn),求fx)的極大值;

(Ⅱ)求a的范圍,使得fx≥1恒成立.

【答案】(Ⅰ)極大值為;(Ⅱ)

【解析】

(Ⅰ)由于x=3fx)的極值點(diǎn),則f′3=0求出a,進(jìn)而求出f′x)>0得到函數(shù)的增區(qū)間,求出f′x)<0得到函數(shù)的減區(qū)間,即可得到函數(shù)的極大值;

(Ⅱ)由于fx≥1恒成立,即x0時(shí),恒成立,設(shè),求得其導(dǎo)函數(shù),分類討論參數(shù)a,得到函數(shù)gx)的最小值大于等于0,即可得到a的范圍.

解:(Ⅰ)

x=3fx)的極值點(diǎn),∴,解得a=3

當(dāng)a=3時(shí),,

當(dāng)x變化時(shí),

x

0,1

1

1,3

3

3,+∞

fx

+

0

-

0

+

fx

遞增

極大值

遞減

極小值

遞增

fx)的極大值為;

(Ⅱ)要使得fx≥1恒成立,即x0時(shí),恒成立,

設(shè),則

(。┊(dāng)a≤0時(shí),由gx)<0得單減區(qū)間為(0,1),由gx)>0得單增區(qū)間為(1+∞),

,得;

ii)當(dāng)0a1時(shí),由gx)<0得單減區(qū)間為(a,1),由gx)>0得單增區(qū)間為(0,a),(1,+∞),此時(shí),∴不合題意;

iii)當(dāng)a=1時(shí),fx)在(0+∞)上單增,,∴不合題意;

iv)當(dāng)a1時(shí),由gx)<0得單減區(qū)間為(1a),由gx)>0得單增區(qū)間為(0,1),(a+∞),此時(shí)不合題意.

綜上所述:時(shí),fx≥1恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,.

1)求家庭的月儲(chǔ)蓄關(guān)于月收入的線性回歸方程,并判斷變量之間是正相關(guān)還是負(fù)相關(guān);

2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲(chǔ)蓄.(注:線性回歸方程中,,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫出的極坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校對(duì)高二600名學(xué)生進(jìn)行了一次知識(shí)測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);

分組

頻數(shù)

頻率

2

004

8

016

10

________

________

________

14

028

合計(jì)

________

100

2)請(qǐng)你估算該年級(jí)學(xué)生成績的中位數(shù);

3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為分別為左右焦點(diǎn),是橢圓上點(diǎn),且.

1)求橢圓的方程;

2)過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值以及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C的方程是:,),則下列說法正確的是(

A.當(dāng)時(shí),雙曲線的離心率為

B.過雙曲線C右焦點(diǎn)F的直線與雙曲線只有一個(gè)交點(diǎn)的直線有且只有2條;

C.過雙曲線C右焦點(diǎn)F的直線與雙曲線右支交于M,N兩點(diǎn),則此時(shí)線段長度有最小值;

D.雙曲線C與雙曲線:)漸近線相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn)的中點(diǎn)為,的交點(diǎn)為,求

查看答案和解析>>

同步練習(xí)冊答案