已知命題p:?x0∈R,tan x0=
3
;命題q:?x∈R,x2-x+1>0,則命題“p且q”是
命題.(填“真”或“假”)
分析:分別判斷出p,q的真假,再利用真值表作出判斷.
解答:解:當x0=
π
3
時,tan x0=
3
,
∴命題p為真命題;
x2-x+1=(x-
1
2
2+
3
4
>0恒成立,
∴命題q為真命題,
∴“p且q”為真命題.
故答案為:真
點評:本題考查復合命題真假性的判斷,利用真值表,轉化為p,q的真假性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0∈R,使得x02+(a-1)x0+1<0,命題q:y=x2-ax在區(qū)間[1,+∞)沒有極值,若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:?x0∈[-1,1],滿足x02+x0-3a≥0,q:y=(2a-1)x為減函數(shù).若命題p∧q 為真命題,則實數(shù)a的取值范圍
1
2
<a
2
3
1
2
<a
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南充一模)已知命題p:?x0R+,log2x0=1,則?p是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0∈R,sinx0≥1,則有( 。
A、?p:;?x0∈R,sinx0<1B、?p:?x∈R,sinx<1C、?p:?x∈R,sinx≤1D、?p:?x∈R,sinx>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0∈R,ex-mx=0,q:?x∈R,x2+mx+1≥0,若p∨(?q)為假命題,則實數(shù)m的取值范圍是( 。
A、(-∞,0)∪(2,+∞)B、[0,2]C、RD、∅

查看答案和解析>>

同步練習冊答案