【題目】某市需對(duì)某環(huán)城快速車(chē)道進(jìn)行限速,為了調(diào)研該道路車(chē)速情況,于某個(gè)時(shí)段隨機(jī)對(duì)輛車(chē)的速度進(jìn)行取樣,測(cè)量的車(chē)速制成如下條形圖:
經(jīng)計(jì)算:樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.已知車(chē)速過(guò)慢與過(guò)快都被認(rèn)為是需矯正速度,現(xiàn)規(guī)定車(chē)速小于或車(chē)速大于是需矯正速度.
(1)從該快速車(chē)道上所有車(chē)輛中任取個(gè),求該車(chē)輛是需矯正速度的概率;
(2)從樣本中任取個(gè)車(chē)輛,求這個(gè)車(chē)輛均是需矯正速度的概率;
(3)從該快速車(chē)道上所有車(chē)輛中任取個(gè),記其中是需矯正速度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
【答案】(1) ;(2 ) ;(3)見(jiàn)解析.
【解析】試題分析:(1)記事件為“從該快速車(chē)道上所有車(chē)輛中任取個(gè),該車(chē)輛是需矯正速度”,根據(jù)給出的條形圖,即可求解事件的概率;
(2)記事件為“從樣本中任取個(gè)車(chē)輛,這個(gè)車(chē)輛均是需矯正速度”根據(jù)題設(shè),利用古典概型及其概率的計(jì)算公式,即可求解事件概率;
(3)由題意得,需矯正速度的個(gè)數(shù)服從二項(xiàng)分布,即可求解對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望。
試題解析:(1)記事件為“從該快速車(chē)道上所有車(chē)輛中任取個(gè),該車(chē)輛是需矯正速度”,
因?yàn)?/span>,
由樣本條形圖可知,所求的概率為
.
(2)記事件為“從樣本中任取個(gè)車(chē)輛,這個(gè)車(chē)輛均是需矯正速度”
由題設(shè)可知樣本容量為,又需矯正速度個(gè)數(shù)為個(gè),故所求概率為.
(3)需矯正速度的個(gè)數(shù)服從二項(xiàng)分布,即,
∴, ,
,
因此的分布列為
由,知數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了實(shí)現(xiàn)60萬(wàn)元的生源利潤(rùn)目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)招生人員的獎(jiǎng)勵(lì)方案:在生源利潤(rùn)達(dá)到5萬(wàn)元時(shí),按生源利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且資金y(單位:萬(wàn)元)隨生源利潤(rùn)x(單位:萬(wàn)元)的增加而增加,但資金總數(shù)不超過(guò)3萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)利潤(rùn)的20%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y=0.2x,y=log5x,y=1.02x,其中哪個(gè)模型符合該校的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“病毒”的藥物,經(jīng)試驗(yàn),服用甲、乙兩種藥物痊愈的概率分別為.現(xiàn)已進(jìn)入藥物臨床試用階段,每個(gè)試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)超過(guò)乙種抗病毒藥物的治愈人數(shù),則稱(chēng)該組為“甲類(lèi)組”.
(1)求一個(gè)試用組為“甲類(lèi)組”的概率;
(2)觀(guān)察3個(gè)試用組,用表示這3個(gè)試用組中“甲類(lèi)組”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 在 處取得極值.
(1)求 的單調(diào)區(qū)間;
(2)若 在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且點(diǎn)到直線(xiàn)的距離為, 與的公共弦長(zhǎng)為.
(1)求橢圓的方程及點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)的直線(xiàn)與交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在頸椎病患者越來(lái)越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到了如下的4×4列聯(lián)表:
未過(guò)度使用 | 過(guò)度使用 | 合計(jì) | |
未患頸椎病 | 15 | 5 | 20 |
患頸椎病 | 10 | 20 | 30 |
合計(jì) | 25 | 25 | 50 |
(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān)?
(2)已知在患有頸錐病的10名未過(guò)度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線(xiàn)性相關(guān)關(guān)系.
(1)求y關(guān)于t的線(xiàn)性回歸方程;
(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.
附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的方程為x﹣y+4=0,曲線(xiàn)C的參數(shù)方程為.
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解兩班學(xué)生寒假期間觀(guān)看《中國(guó)詩(shī)詞大會(huì)》的時(shí)長(zhǎng),分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,將他們觀(guān)看的時(shí)長(zhǎng)(單位:小時(shí))作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì)哪個(gè)班的學(xué)生平均觀(guān)看的時(shí)間較長(zhǎng);
(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為,求的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com